
Mathematical model for melting curves and heteroduplex content

In Figure 1, we show high-resolution melting curves of the DNA amplicon from three
genotypes of a SNP for which the homozygous mutation is indistinguishable from that of
the wild type, due to nearest-neighbor thermodynamic symmetry of the mutation. (This
says that the bases immediately surrounding the mutation are identical when the strands
are interchanged, e.g., TCA/AGT ↔ TGA/ACT.) Our goal is to add the right proportion
of wild-type DNA to each genotype before PCR, so that after amplification, melting, and
reannealing, the mixture with the homozygous mutant sample will develop heteroduplex
content but the mixture with the wild-type sample will not, making the curves distin-
guishable. The mixture with the heterozygous sample will have its heteroduplex content
reduced from its natural 50 % value, so we must be careful that its curve remains distinct
from the heteroduplex-enhanced homozygous sample.

Therefore, in this section, we develop a model for the melting curve of a mixture of
genotypes in terms of the melting curves of the consituent duplex types and the mixture
proportions. In the case above that the homozygous mutant and wild-type curves are in-
distinguishable, we show that the difference among curves of different genotypes depends
solely on the heteroduplex content of the mixture. In addition, the temperature of maxi-
mum separation does not change with heteroduplex content. This is in spite of the maybe
surprising fact that the two heteroduplex species have different thermodynamic melting
behavior, even with respect to nearest-neighbor approximation.

Finally, we model and optimize the separation of heteroduplex contents of the three
genotypes in terms of mixture proportion.

We begin by asking what kind of duplexes are present for melting in what proportions,
and what cumulative melting curve will result when we mix wild-type and homozygous
mutant DNA in proportion x of wild-type and 1 − x of homozygous mutant and strands,
melt them, then rapidly cool them so that complementary and nearly complementary
strands form duplexes independently, i.e., solely in proportion to their concentrations.

This answer will model the results of all spiking experiments. When x = 1, it describes
a pure wild-type sample, whether unspiked, or spiked in any proportion. When x = 0, it
describes a pure homozygous mutant sample. For arbitrary 0 < x < 1, it describes spiking
a homozygous mutant sample with wild-type DNA in the given proportions. And finally,
if we spike a heterozygous sample with wild-type DNA in a proportion x of wild-type to
1 − x of heterozygous sample, then since half of the heterozygous samples strands are of
wild-type, and half are of homozygous mutant type, in terms of strand concentrations, it
is equivalent to spiking a homozygous mutant sample with wild-type DNA in proportion
x + 1−x

2
of wild-type and 1−x

2
.

In the situation described, there are concentrations x of strands W and W̄ , the ‘for-
ward’ and complementary ‘reverse’ strand of the wild-type DNA. There are also concen-
trations 1 − x of strands M and M̄ , the ‘forward’ and complementary ‘reverse’ strand of
the mutant homozygous DNA.
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After independent reannealing then, there will be the following concentrations of
four duplex species arranged in ‘standard binomial order’, a.k.a., ‘FOIL’, (xW + (1 −
x)M) ¯(xW + (1 − x)M).

D1 = x2WW̄

D2 = x(1 − x)WM̄

D3 = x(1 − x)MW̄

D4 = (1 − x)2MM̄

Corresponding to each duplex species Dj will be its standardized fluorescence curve
for a fixed concentration, Fj(T ). The function Fj(T ) refers to the curve with background
fluorescence removed, and automatically accounts for whatever fluorescence per duplex
variation there may be among the different species types, i.e., if duplex flourescences are
proportional by unequal factors to concentration, just replace Fj by cjFj , where cj de-
scribes the relationship between duplex concentration and its contribution to fluorescence.)

As noted above, if the unknown sample is wild-type, then regardless of the spike
proportion x, the entire sample is wild-type, and the resulting melting curve is described
by

W (T, x) = F1(T ).

If the unknown sample is a homozyogous SNP, then we are in the situation described
above, and assuming fluorescence is additive, the resulting melting curve is described by

M(T, x) = x2F1(T ) + x(1 − x)F2(T ) + x(1 − x)F3(T )(1 − x)2F4(T ).

If the unknown sample is heterozyogous, then by the equivalence noted above, wild-

type homoduplexes will be present in proportion (1+x)2

4 , homozygous SNP homoduplexes

will be present in proportion (1−x)2

4 , and each type of heteroduplex will be present in

proportion (1+x)(1−x)
4

= 1−x2

4
.

The resulting negative derivative of the melting curve is described by

H(T, x) =
(1 + x)2

4
F1(T ) +

1 − x2

4
F2(T ) +

1 − x2

4
F3(T ) +

(1 − x)2

4
F4(T ).
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To simplify the subsequent analysis we write

W (T, x) = 1F1(T )

M(T, x) = m1(x)F1(T ) + m23(x)(F2(T ) + F3(T )) + m4(x)F4(T )

H(T, x) = h1(x)F1(T ) + h23(x)(F2(T ) + F3(T )) + h4(x)F4(T )

where m1(x) = x2, m23(x) = x(1 − x), m4(x) = (1 − x)2, and h1(x) = (1+x)2

4 ,

h23(x) = 1−x2

4 , h4(x) = (1−x)2

4 .
Note that

m1(x) + 2m23(x) + m4(x) = 1 = h1(x) + 2h23(x) + h4(x).

Our goal is to maximize our ability to distinguish these three curves, as measured by
the minimum separation between any two of them. The separation will be defined by the
maximum absolute value of their difference. So our goal is to find

max
x∈[0,1]

min{max
T

|W (T, x) − M(T, x)|, max
T

|W (T, x) − H(T, x)|, max
T

|M(T, x) − H(T, x)|}.

For this reason we compute

W (T, x) − M(T, x) = (1 − m1(x))F1(T ) − m23(x)(F2(T ) + F3(T ))) − m4(x)F4(T ).

W (T, x) − H(T, x) = (1 − h1(x))F1(T ) − h23(x)(F2(T ) + F3(T ))) − h4(x)F4(T ).

H(T, x)−M(T, x) = (h1(x)−m1(x))F1(T )+(h23(x)−m23(x)(F2(T )+F3(T )))+(h4(x)−m4(x))F4(T ).

In the situation where the nearest-neighbor model of the homozygous SNP has the
same thermodynamic parameters as the wild-type and the corresponding melting curves
and their (negative) derivatives are identical, (experimental curves indistinguishable) i.e.,
F1(T ) = F4(T ), requiring us to use the spiking protocol, we may simplify these differences
considerably. (Even when F1(T ) = F4(T ) according to nearest neighbor theory, the ther-
modynamic parameters that determine F2 and F3(x) are not identical. The differences are
reported in Table x, but do not affect the subsequent analysis.) We will use the subscript

= to indicate this case.
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Then assuming F1 = F4 we can combine their of the F1 and F4 in the expressions for
W (T, x) − M(T, x) and W (T, x) − H(T, x) to obtain

W=(T, x) − M=(T, x) = (1 − m1(x) − m4(x))F1(T ) − m23(x)(F2(T ) + F3(T )))

and

W=(T, x) − H=(T, x) = (1 − h1(x) − h4(x))F1(T ) − h23(x)(F2(T ) + F3(T ))).

Using
1 − (m1(x) + m4(x)) = 2m23(x)

1 − (h1(x) + h4(x)) = 2h23(x)

then distributing the result back equally between F1 and F4 for symmetry (F1 =
1
2 (F1 + F4)), we obtain

W=(T, x) − M=(T, x) = m23(x)(F1(T ) + F2(T ) + F3(T ) + F4(T ))

W=(T, x) − H=(T, x) = h23(x)(F1(T ) + F2(T ) + F3(T ) + F4(T ))

and writing the third difference as the difference of these differences,

H=(T, x) − M=(T, x) = (m23(x) − h23(x))(F1(T ) + F2(T ) + F3(T ) + F4(T ))

The graphs of these three functions are given in Figure 2, annotated with key features
derived below.

These expressions have two important consequences. First, they show that the point-
wise separation of the curves is proportional solely to the difference in heteroduplex fraction
of the mixtures. Second, they uncouple the x (spike proportion) and T (temperature) de-
pendence of the differences among fluorescence curves of different genotypes. This allows
us to optimize the spike proportion independently, regardless of the specific nature of indi-
vidual duplex curves contributing to the superpositions. This is perhaps surprising, since in
general, different convex combinations (superpositions with positive coefficients summing
to 1) of different functions result in varying shapes and locations of their extrema.

Also note that if one prefers to consider melting ‘peaks’, i.e., the negative derivative
curves, Pj(T ) = −F ′

j(T ), since all expressions are linear, we can obtain the difference of
the negative derivative curves of the different genotypes simply by replacing Pj for Fj in
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the expressions computed above, and all of the results we will obtain regarding maxima
and minima will also hold in this framework.

Symbolically, our ultimate genotype separation problem reduces to

max
x∈[0,1]

min{max
T

|W=(T, x) − M=(T, x)|, max
T

|W=(T, x) − H=(T, x)|, max
T

|M=(T, x) − H=(T, x)|}

= max
x∈[0,1]

min{m23(x), h23(x), |m23(x) − h23(x)|}max
T

|F1(T ) + F2(T ) + F3(T ) + F4(T )|

= G max
x∈[0,1]

min{m(x), h(x), |m(x)− h(x)|},

where
m(x) = 2m23(x) = 2x(1 − x)

and

h(x) = 2h23(x) =
1 − x2

2
,

make m(x) and h(x) the (non-negative) total heteroduplex proportion in the spiked ho-
mozygous SNP and heterozygous samples, respectively, and

G =
1

2
|F1(T ) + F2(T ) + F3(T ) + F4(T )|,

For example, when x = 0, h(x) = 1
2 , and m(x) = 0, 1

2G is the separation of the unspiked
heterozygous curve from the common unspiked wild-type and homozygous SNP curves.
What remains is to solve the spike dependent optimization problem

max
x∈[0,1]

min{m(x), h(x), |m(x)− h(x)|}.

(The rest is the same.)
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