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Detection of heteroduplexes effectively screens for heterozygotes, but usu-
ally does not distinguish between different homozygotes. If DNA of known
genotype is added to PCR products of a sample of unknown homozygous
genotype, and the mixed DNA is dissociated then hybridized, formation of
heteroduplexes indicates that different genotypes are present. Instead of mix-
ing after PCR, which requires two analyses and increases the risk of product
contamination, we propose adding DNA of known homozygous genotype to
each unknown before PCR. If the mixture fraction is chosen carefully, the
amount of heteroduplexes produced will distinguish among a heterozygous
SNP, a homozygous SNP, and wild-type DNA. Our analysis suggests that
when homozygotes are most similar, the quantity of additional DNA which
optimizes the separation of the three genotypes of bi-allelic, diploid DNA com-
prises one-seventh of the resulting mixture. Experimental verification with
both high-resolution melting analysis and quantitative temperature gradient
capillary electrophoresis (qTGCE) confirmed this prediction, and the impor-
tance of the correct proportion. If the proportion is one-third or one-half,
for instance, some genotypes are virtually indistinguishable. When combined
with high-resolution melting analysis, this technique requires only one close-
tube analysis for full genotyping.

Heteroduplex analysis is a popular technique to screen for sequence variants in diploid
DNA. After PCR, heteroduplexes are usually separated by conventional gel electrophore-
sis (1,2,3), although denaturing high pressure liquid chromatography (DHPLC), (4) and
temperature gradient capillary electrophoresis (TGCE) (5) can be used. Recently, het-
eroduplexes have been detected in solution without separation by high-resolution melting
analysis. Either labeled primers (5) or a saturating DNA dye (7) were used to detect
a change in shape of the fluorescent melting curve when heteroduplexes were produced.
High-resolution melting of PCR products from diploid DNA has been used for mutation
scanning (8−10), HLA matching (11), and genotyping (7,12).

Heteroduplex analysis is seldom used for genotyping because different homozygotes
are usually not separated. In some cases, DHPLC may separate PCR products by size
(13). However, both DHPLC and TGCE usually fail to detect homozygous single base
changes, small insertions and deletions. If suspected, these homozygous changes can be
detected by mixing the PCR product with a known homozygous PCR product. However,
two sequential analyses are required and the concentrated PCR product is exposed to the
laboratory, increasing the chance of PCR product contamination of subsequent reactions.

In contrast to DHPLC and TGCE, different homozygotes can usually be distinguished
by high-resolution melting analysis. Complete genotyping of human SNPs is possible
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in over 90% of cases because different homozygotes differ in melting temperature (14).
However, in some cases the two homozygotes cannot be distinguished and mixing studies
are necessary. When homozygous samples are mixed after PCR, equal volumes of PCR
products are combined, denatured, annealed, and melted.

Alternatively, unknown DNA can be mixed with known homozygous DNA before
PCR. If the mixed samples have the same genotype, no heteroduplexes will be produced. If
the mixed samples are not the same, different amounts of heteroduplexes will be produced,
depending on the genotype and the amount of homozygous DNA added.

Previously, we empirically determined that the optimum amount of known homozy-
gous DNA to distinguish all SNP genotypes was approximately 15%. We now present
a rigorous derivation of this optimum, by analyzing the theoretical heteroduplex content
and its contribution to melting curves and TGCE measurements across a full spectrum of
genotype mixing proportions, which are also of interest in pooled sample studies. We then
verify the close agreement of the theory with experiment using both high-resolution melting
analysis and TGCE. The experiments emphasize the importance of using the correct pro-
portion of added DNA: If the proportion is one-third or one-half rather than one-seventh,
for instance, some genotypes can be virtually indistinguishable.

In Fig. 1, we show high-resolution melting curves of amplicons from DNA exhibiting
three SNP genotypes. The melting curve corresponding to samples with a homozygous
mutation is indistinguishable from that of the wild type, due to nearest-neighbor thermo-
dynamic symmetry. (This says that the bases immediately surrounding the mutation are
identical when the strands are interchanged, e.g.,

5’-TCA-3’ 5’-TGA-3’
3’-AGT-5’ 3’-ACT-5’

The melting curves corresponding to heterozygous samples, which as genomic DNA
consist of equal parts wild-type homoduplexes and mutant homoduplexes, appear quite
different than the melting curves of either of these species of duplex. Even though PCR
amplifies all strands in the form of homoduplexes, by the time it plateaus, strands are
reassociating randomly into homoduplexes and heteroduplexes instead of extending. In
the heterozygous case, the DNA that is melted is an equal mixture of four species of
duplex, the wild-type and mutant heteroduplexes, and two types of nearly complementary
heteroduplexes, so that the total heteroduplex content is 1

2 (Fig. 2).

There are only complementary strands amplified from wild-type and homozygous
mutant samples, so even at the end of PCR, there are no heteroduplexes present. After
PCR and analysis has determined a sample to be indistinguishable wild-type or mutant
homozygous, a procedure sometimes known as spiking can be performed, which consists
of of adding DNA of known genotype to determine genotypic identity or difference from
the absence or presence of heteroduplexes.
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Our goal is to find a method requiring no post-PCR mixing (which is suceptible
to contamination) which can distinguish wild-type and homozygous mutant from each
other, as well as from heterozygous samples, in one-step. To do so, we seek the optimal
fraction of wild-type DNA to be added to samples before PCR, which we call the ‘mixture
fraction’, so that after amplification and random reassociation of strands, the heteroduplex
content of mixtures with the different genotypes will make the resulting melting curves
most distinguishable.

The mixture with a wild-type samples will still have no heteroduplex content regardless
of the amount of the identical DNA which is added. In contrast, if wild-type DNA is mixed
with a homozygous mutant sample, even though PCR amplifies all strands of the mixture
as homoduplexes, by the time it plateaus (or after heating then cooling the mixture to
promote random reassociation) a fraction of heteroduplexes will be formed, depending on
the amount of wild-type DNA added. If wild-type DNA is mixed with a heterozygous
mutant sample, the mixture will now consist of unequal parts of wild-type homoduplexes
and mutant homoduplexes. At the end of PCR, or after dissociating by heating and
annealing by cooling, a reduced fraction of heteroduplexes will be formed depending on
the amount of wild-type DNA added. As the heteroduplex enhanced homozygous mutant
melting curve moves away from the wild-type melting curve, the heteroduplex reduced
heterozygous melting curve moves toward them both. We seek the point where the three
are best separated.

MATERIALS AND METHODS

Our basic method is to derive a model for the heteroduplex content of a mixture
of genotypes after amplification and reassociation, in terms of the mixture fraction. We
then develop quantitative models for the melting curve of such a mixture in terms of the
melting curves of the constituent duplex types and the heteroduplex content, and similarly
for TGCE arrival data of mixtures in terms of their constituent duplex types and content.

In the case described above when the homozygous mutant and wild-type curves are
indistinguishable, the result of our analysis is that the maximum separation between melt-
ing curves of different genotypes is given by difference in the heteroduplex content of the
mixtures times the maximum separation between the common homoduplex melting curve
and the average heteroduplex melting curve.

After presenting the model, we use it to optimize the separation of heteroduplex con-
tents of the three genotypes in terms of mixture fraction. Next we present our materials for
performing experimental tests of the model and methods for their analysis before discussing
the results in the final section.

We begin in Table 1a which lists the type and fraction of homoduplexes are amplified
when we mix wild-type and unknown DNA in fraction x of wild-type to 1 − x of either
wild-type, homozygous mutant, or heterozygous mutant. We refer to x, which measures
the fraction of wild-type DNA added as a proportion of the mixture of sample plus added
DNA, as the ‘mixture fraction’. When x = 0, the mixture consists of just the original
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genotype. When x = 1, it describes a pure wild-type sample regardless of the initial
unknown genotype. Table 1b lists the type and fraction of duplexes which result when
complementary and nearly complementary strands reassociate independently to form du-
plexes when PCR has plateaued, or after subsequent heating and cooling. The assumption
of independence states that complementary and nearly complementary strands associate
in proportion to their concentration, so we obtain the fractions in Table 1b simply by
multiplying the corresponding fractions from Table 1a.

Corresponding to each duplex species dj will be its normalized fluorescence curve,
Fj(T ). The function Fj(T ) refers to the curve with background fluorescence removed
and accounts for factors such as lower fluorescence per duplex behavior of heteroduplexes.
Table 1c gives the normalized melting curves for the mixture fraction x of wild-type DNA
and 1−x DNA sample of each of the genotypes, Assuming fluorescence is additive, We use
W (T, x) for wild-type sample, M(T, x) for mutant homozygous sample, and H(T, x) for
heterozygous sample (T is temperature). Experimental examples of the unmixed curves
W (T, 0), M(T, 0), and H(T, 0) are shown in Fig. 1. and theoretical examples of F1 =
W (T, 0), F2, F3, F4 = M(T, 0), and H(T, 0) are shown in Fig. 2.

Our goal is to find the mixture fraction x which maximizes our ability to separate the
three mixed melting curves. We use the maximum vertical distance between two graphs
to measure their separation, and the minimum separation among any of the three pairs of
curves to score the effectiveness of our mixture fraction. Mathematically then, we seek

max
x∈[0,1]

min{max
T

|W (T, x) − M(T, x)|, max
T

|W (T, x) − H(T, x)|, max
T

|H(T, x) − M(T, x)|}.

(1)
Table 1d gives expressions for the differences W−M and W−H, and after simplifying,

we will determine H − M as the difference of these differences.

Since we are most interested in the situation where F1(T ) and F4(T ) are difficult to
distinguish, or we would not be adding DNA of one type to do so, we assume F1(T ) =
F4(T ). This condition is predicted by the nearest-neighbor approximation for SNPs with
the symmetry described in the previous section. Although the two homoduplexes have the
same melting curves in the symmetric case, the heteroduplex species typically have very
different thermodynamic behavior, and fortunately our derivation does not require that
F2 and F3 agree. Table 1e gives simplified forms for the difference curves in this case,
indicated by the subscript =. They are obtained by first replacing F4 by F1, combining
terms removing a common factor from the resulting coefficients of F1, F2, and F3, then
writing F1 = F1+F4

2 .

The result justifies our earlier statement that when the homozygous mutant and wild-
type curves are indistinguishable, the difference between melting curves of different geno-
types is given by difference in the heteroduplex content of the mixtures times the difference
between the common homoduplex melting curve and the average heteroduplex melting
curve:

4



W=(T, x) − M=(T, x) = m(x)F (T ) (2a)

W=(T, x) − H=(T, x) = h(x)F (T ) (2b)

and therefore

H=(T, x) − M=(T, x) = (h(x) − m(x))F (T ), (2c)

where

F (T ) =
F1(T ) + F4(T )

2
−

F2(T ) + F3(T )

2
(3)

is the difference between the average homoduplex melting curve and the average het-
eroduplex melting curve, and

m(x) = 2x(1 − x) (4a)

h(x) =
1 − x2

2
(4b)

h(x) − m(x) =
3x2 − 4x + 1

2
. (4c)

represent the total heteroduplex content difference between the various genotype mix-
tures with wild-type DNA. The graphs of the absolute values of the three heteroduplex
content difference functions are given in Fig. 3, annotated with key features derived below.
The (theoretical) standard difference curve F (T ) is shown in Fig. 2.

The expressions for m(x), h(x), and h(x) − m(x) uncouple the x (mixture fraction of
added DNA) and T (temperature) dependence of the differences among fluorescence curves
of different genotypes, and identify the x dependence of the separation of melting curves
of different genotypes as proportional solely to the difference in heteroduplex content of
the mixtures. This allows us to optimize the mixture fraction independently, regardless
of the specific nature of individual duplex curves contributing to the superpositions. This
is perhaps surprising, since in general, different combinations of different functions result
in varying shapes and locations of their extrema. Since all expressions are linear, we can
obtain the difference of the negative derivative curves of the different genotypes simply by
replacing Fj in the expressions above with their negative derivatives, and all of the results
we will obtain regarding maxima and minima will still hold.

Our original genotype separation problem has become

max
x∈[0,1]

min{m(x), h(x), |h(x)− m(x)|}F, (5)

where
F = max

T
F (T ) (6)
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represents the twice the separation of the original (no added wild-type DNA) heterozygous
curve from the common original wild-type and homozygous SNP curves, since h(0) = 1

2
.

So all that remains to optimize the mixture fraction x is to maximize the separation by
maximizing the smallest of the three heteroduplex content differences:

s(x) = min{m(x), h(x), |h(x)− m(x)|}. (7)

In Fig. 3, this corresponds to finding the highest point on the lowest of the three graphs of
m, h, and |m−h|. Table 1f identifies three intervals on which the ordering of these functions
is preserved. We can find these intervals by finding the points where two of them become

equal: h(x) = m(x) when h(x)−m(x) = 3x2
−4x+1
2 = 1

2 (3x−1)(x−1) = 0, at x = 1/3 and
x = 1, and m(x) = h(x)−m(x) when h(x)−2m(x) = 7

2
x2−4x+ 1

2
= 1

2
(7x−1)(x−1) = 0,

at x = 1
7 and x = 1.

Calculus theorems confirm our visual intuition that the maximum of of the lowest
graph can only occur where the slope of its tangent is zero, or it does not have a well-
defined tangent. (If s(x) has a local extremum at x = a, then s′(a) = 0 or s′(a) does not
exist.) The only place s′(x) = 0 is halfway between its roots 1

3
and 1 (since it is quadratic

in this interval), i.e., at x = 2
3 . This corresponds to adding twice as much wild-type DNA

as there was unknown DNA and gives a separation of 1
6
F , between the heterogygous and

homozygous SNP curves, or 1
3 of the original separation between the heterozygous melting

curve and the other two. The separation between the wild-type melting curve and the
other two melting curves will be larger.

The only places s(x) is not differentiable is where it changes form, i.e., at x = 1
7 and

x = 1
3 . Comparing the values at these points and x = 2

3 , we find the optimal mixture
fraction occurs at x = x∗ = 1

7
, as indicated in Fig. 3. Here, the melting curve of the

mixture with homozygous DNA is halfway between the other curves at the temperature of
maximum separation, where its separation from each is 12

49
F . This is only barely less than

half of the original separation of 1
2F = 24

48F between the heterozygous melting curve and
the other two genotype curves.

A simple heuristic explanation for this value, corresponding to adding one part wild-
type DNA to six parts unknown sample is based upon the observation that the melting
curves will be optimally separated when the homozygous mutant curve becomes equidis-
tant from both the wild-type and heterozygous melting curves, so the heteroduplex con-
tent of the wild-type-heterozygous mixture must be exactly twice that of the wild-type-
homozygous mixture: h(x) = 2m(x) The ratio of 1 part wild-type to 6 parts unknown is
optimal because 6 is the unique number which can be divided in equal parts (3 + 3, the
heterozygous sample strands), and when one of the parts (3, SNP strands) is multiplied
by the other plus 1 (4 = 3+1, wild-type sample plus added wild-type strands) one obtains
exactly twice the original number (6, the homozygous SNP strands) multiplied by 1 (added
wild-type strands.) At the simplest level, it is because ( 6

2 )( 6
2 + 1) = 2(6)(1) that x∗ = 1

7
of the total unknown plus added DNA is the optimal mixture fraction. This is visualized
in the animation
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http://www.math.utah.edu/∼palais/pcr/michael/spike/spike.html

When the wild-type and homozygous SNP curves are not the same, the max-min
problem does not separate into individual mixture fraction and temperature problems. In
this case, the optimal mixture fraction still may be characterized by the two-dimensional
generalization of the above criteria, but it must be found numerically depending upon the
specific curves Fj(T ). That is, the mixture fraction-temperature rectangle [0, 1]× [T1, T2]
must be divided into regions on which the corresponding h(x, T )−m(x, t) is either positive
or negative, and within these regions, local extrema are characterized by when the gradient
of the smaller of h(x, T ) and m(x, T ), denoted s(x, T ) or of the larger minus the smaller,
denoted l(x, T ) − s(x, T ) is zero, or when s(x, T ) = l(x, T ) − s(x, T ). It seems reasonable
to expect that the best separation could be obtained by including the possibility of adding
whichever type of homozygous SNP or wild-type curve is already closer to the heterozygous
curve.

To test the model of the previous section, we performed several experiments to geno-
type DNA for the presence of a homozygous or heterozygous SNP, 187C>G, which is found
in the hemochromatosis gene (HFE). This mutation we analyzed

5’-TCA-3’ 5’-TGA-3’
3’-AGT-5’ 3’-ACT-5’

has the nearest-neighbor symmetry described above which results in a melting curve
for the homozygous case which is theoretically identical to and experimentally indistin-
guishable from that of wild-type DNA.

(Table 2 contains the complete sequence of melting analysis and TGCE amplicons
with SNP and primers highlighted. H63D sequence 031010.doc)

We examined mixtures of known quantities of DNA of each genotype and additional
wild-type DNA, in 21 ratios of the added DNA to total DNA (initial plus added.) The
ratios, from 1/28 to 14/28 by increments of 1/28, and from 15/28 to 27/28 in steps of
2/28, allowed us to include the theoretically optimal value, 1/7, and observe the behavior
of the process in some detail over a wide range of interest for pooled samples as well. The
ratio j/28 of additional wild-type DNA to total DNA (unknown sample plus additional)
corresponds to the ratio j/(28-j) of additional DNA to unknown, so for instance, the optimal
value of 4/28 of total DNA corresponds to adding 4/24=1/6 as much wild-type as there is
unknown sample DNA.

We mixed wild-type DNA in three replicates for each of the three genotypes (denoted
WT, MUT, and HET) before PCR with the appropriate mixture fraction of wild-type
DNA. All samples with a common mixture fraction were amplified together in the presence
of a high-resolution fluorescent dye, along with two control samples containing heterozygous
DNA with no wild-type added. Since the extension step of each PCR cycle generates only
homoduplexes, after amplification is complete, we perform a final additional melt and
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reannealing to produce the heteroduplexes. Samples with the same mixture fraction of
additional DNA were also analyzed simultaneously.

Detailed protocols for the amplification and subsequent heating and cooling before
melting analysis are given in Table 3.

We performed high-resolution melting analysis on all of the resulting samples to pro-
duce actual fluorescence vs. temperature melting curves corresponding to the model func-
tions of the previous section.

This is a closed-tube process which avoids risk of contamination and leaves the sample
undisturbed for further types of analysis. It provides a fast, economical, and accurate
method of genotyping and mutation scanning which has been described and studied in a
variety of contexts (7 − 12).

Melting curves are first standardized by removal of background fluorescence. Next,
they are temperature shifted to adjust for small variations in reported temperature, by
superimposing the ‘toe’ feature common to all curves, where only the most stable homod-
uplexes are left to melt. Difference plots were used to highlight relative variation between
genotypes.

The value and location of the maximum difference and the area between curves of the
different genotypes and the average of the wild-type replicates were recorded for analysis
and comparison with the theory. According to the theory, location of maximum difference
is constant, and magnitude of maximum difference, and area under difference are directly
proportional to the heteroduplex concentration of the samples.

To obtain an independent and more direct analysis of heteroduplex content, we also
performed temperature-gradient capillary electrophoresis (TGCE) on a set of genotype
mixtures representing the same range of mixture fractions. In this technique, the arrival
of duplexes in a sample is detected after they are drawn through a gel. Each species of
duplex has a characteristic arrival time distribution depending on its spatial conformation.
This corresponds to the frequency of duplex arrivals per frame, the quantity which is ac-
tually measured. The center of heteroduplex peaks are significantly delayed and separated
from each other in comparison to homoduplex peaks. This is due to the distinct ‘bubbles’
formed by different mismatched base pairs of the two heteroduplexes. The two species of
homoduplex have no bubbles and appear as one peak. The two heteroduplex peaks are
easily separated from the homoduplex peak and from each other. These peaks exhibit
simple mathematical behavior which makes it possible to separate and quantify the rela-
tive contributions of the heteroduplexes. This permitted us to more directly validate the
relative concentration of heteroduplexes in samples upon which our theoretical model of
mixture separation is based.

For TGCE analysis, we used larger amplicons containing the same region in the HFE
gene. In addition to larger amplicons providing better TGCE results, this also could show
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that our results were independent of amplicon size. Detailed protocols for the amplification
of samples for TGCE analysis are given in Table 3b, and protocols for the analysis itself
in Table 3c.

The TGCE data was analyzed quantitatively as follows. Individual TGCE peaks were
approximated by exponential distributions of the form F (t) = Ae−kt, t ≥ t0; F (t) = 0, t <
t0. Higher resolution data might be amenable to closer fit by higher order gamma dis-
tributions of which the exponential distribution is a special case, but since the peaks are
only resolved by on the order of 10 data points, the simplest version must suffice. Some
additional evidence that this is reasonable is provided by the fact that the fit parameters of
each peak remained nearly invariant when the window of points used for the fit was varied
in size and distance from the peak. The observed arrival frequency before each peak did
not have the strict cutoff behavior of the exponential distribution, as some increase above
background was seen one frame before the maximum of the first arrival peak. However, no
increase above background could be seen two frames before the first arrival peak. Based
upon this model, we could solve for the combined amplitudes and decay rate of homod-
uplex concentrations contributing to the first arrival peak, and by successive subtraction,
iteratively solve for the amplitudes of subsequent peaks. Because of the large dynamic
range of the peaks and their narrow extent in terms of data acquisition frames, the quan-
titative results might be expected to be sensitive to the fitting process. For example, we
approximated the start of each exponential sub-distribution with the frame of the maxi-
mum measured value, even though actual peak is located somewhere between this frame
and an adjacent one. In spite of this sensitivity, we found that the decay rates of differ-
ent peaks were nearly independent of duplex species, peak amplitude, fitting window and
method, which provided additional confidence in the model. We are investigating more
sophisticated gamma fits of the data, and corresponding deconvolution techniques which
could reduce these sources of error.

Once the constituent peak amplitudes were quantified, the heteroduplex proportion
was determined by first computing the ratio of the sum of the derived amplitudes of the two
heteroduplex peaks to the sum of these plus the amplitude of the combined homoduplex
peak. This ratio was then adjusted by a factor close to 1 which made the same ratio
determined from heteroduplex control samples equal to the expected value of 0.5.

DISCUSSION

Fig. 4 shows the average calculated values of the maximum difference between the
three replicate melting curves of mixtures with homozygous and heterozygous genotypes
and the average of the wild-type melting curves, as a function of the mixture fraction. The
values are normalized by a scaling which makes the value of pure heterozygous control
samples equal to 0.5. This corresponds to the concentration of heteroduplexes in the
theoretical model, which is superimposed on the figures. The squared correlation between

the experiment and the model, R2 = (X·M)2

(X·X)(M·M) where X is the vector of experimental

values and M is the vector of model values at the measured mixture fractions. (We do
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not use the usual formula for R2 in terms of sums of squares, 1− E·E

X·X
where X + E = M,

which requires M to be the best fit of the experimental data satisfying the orthogonality
condition ||M||2 + ||E||2 = ||X||2, or (M · E) = 0. Even though M is not the best fit, the
squared correlation coefficient values satisfy R2 > .99 for the heterozygous samples, and
R2 > .98 for the homozygous samples.

Fig. 5a shows the standardized melting curves corresponding to the optimal 4/28
mixture fraction. The replicates cluster indistinguishably, appearing as one curve, and the
three genotypes are equally separated. They may easily be classified by the observer’s eye
or by automatic classification software. This is a vast improvement from the Fig. 1 in
which replicates of the homozygous SNP and the wild-type samples overlapped each other
completely.

For comparison, Fig. 5b and 5c show the standardized melting curves correspond-
ing to mixture fractions 9/28 and 14/28, in which it is again difficult to distinguish the
homozygous and heterozygous samples as our model predicts. Fig. 5d show the melting
curves at mixture fraction 19/28 near where they are again best separated, albeit in a
different order. This demonstrates the importance of the correct mixture fraction. Using
equal proportions, or just any small proportion such as 1/3 gives no improvement on the
original results with no mixing at all!

Fig. 6 shows experimental difference curves between wild-type melting curves and the
other two genotype melting curves at two values of x, x = 0, or no added DNA (Fig. 6a)
and at the optimal value x = 4/28 (Fig. 6b). In both case, the shape and magnitude agree
nicely with the theoretical melting curves and the predictions of our model.

Fig. 7a shows typical raw TGCE data for three replicates of mixtures with each
genotype with mixture fraction 9/28, over a range of frames beginning with frame 1000
and containing all of the peaks. Fig. 7b shows the same data normalized by shifting all
peaks to the same frame number and scaling to the same height. This figure demonstrates
the common heteroduplex content of the homozygous mutant and heterozygous genotypes
at this mixture fraction, which is responsible for their overlapping melting curves seen in
Fig. 5b, reemphasizing the sensitivity of the results to choosing the added DNA proportion
suboptimally.

Fig. 8 shows the average of the calculated values of the heteroduplex proportion of
of three replicate of mixtures with homozygous and heterozygous samples as a function
of the mixture fraction. Once again, the squared correlation coefficients between the
experimental data and the model are high, with R2 > .97 for both heterozygous and
homozygous samples. This agreement between the results of a fairly simple analysis and
those of the melting curve experiments and the theory suggest that quantitative TGCE
(qTGCE) estimation of heteroduplex content of mixed or pooled samples is indeed feasible
and informative.

The experimental results confirm the main points of the theory. The maximum dif-
ference between melting curves and the heteroduplex concentrations inferred from TGCE
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experiments agree with each other and with the theoretical predictions of heteroduplex
concentration with considerable accuracy over a wide range of mixture fractions. The
area between melting curves and the location of the maximum difference between curves
also behave as predicted. The plots of these quantities follow the quadratic behavior of
the model qualitatively over the entire range, and are quantitatively close over a range of
mixture fractions up to one-half (14/28) of the total.

Where the data deviates from the model above this mixture fraction, there is a definite
trend for heteroduplex concentrations estimated from TGCE and corresponding melting
curve differences to be larger than those predicted by the theory for a given mixture
fraction. Because the heteroduplex concentration vs. mixture fraction curves for both
the heterozygous and heterozygous unknowns are decreasing for mixture fractions greater
than 14/28, the inferred experimental values correspond to mixture fractions lower than
those we prepared experimentally. So one possible source of such a trend could be that
the actual fraction of additional wild-type DNA fell short of the intended value as that
value grew beyond one-half. Selective amplification (unequal efficiencies) in PCR or ampli-
fication of initial variations that diminish final concentration of wild-type DNA at higher
concentrations could have such an effect. If complementary and nearly-complementary
strands anneal preferentially rather than independent of their differences, the assumptions
of the model would be violated, although it would be surprising if such a bias favored more
rather than less heteroduplex formation.

Regardless of these subtle deviations from close agreement with a fairly simple model,
the ultimate test of our method is given by the ease with which the simple melting curve
approach to can be used to genotype the optimally mixed samples, in contrast to unmixed
or non-optimally mixed ones.
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