RESULTS AND DISCUSSION
High-resolution melting analysis is known to detect heterozygous mutations by change in the shape of the melting curve. It is also known to detect homozygous mutations based on shift in melting temperature (Tm) of the amplicon from the wild type. However, in a small number of SNPs, melting curves may not distinguish the mutant homozygote even though they may distinguish the heterozygote from the wild type (example shown in Fig. 1). Often, this is due to nearest-neighbor thermodynamic symmetry where the bases adjacent to the SNP are identical on both DNA strands, so that when the SNP consists of an interchange between complementary bases, amplicon Tm is unchanged, and the SNP is not detected by melting analysis. The hemochromatosis (HFE) gene loci analyzed in Fig. 1 involves the SNP 187C>G (underlined) shown below, which results in identical Tm for both the wild type and the homozygous mutant amplicons:
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The objective of this study was to find an optimum amount of wild type DNA which, when mixed with the unknown sample, will discriminate all three genotypes even for the most challenging SNPs with nearest-neighbor symmetry (such as the HFE mutation.) The starting point of the mathematical model thus assumes that the annealing (or re-association) kinetics of heteroduplexes versus homoduplexes are equivalent, and that the melting curves, or TGCE elution curves, look the same between wild type and homozygous mutant. When PCR is terminated by a denaturation-annealing step, the model assumes that a pure heterozygous sample will have an equal chance of forming homoduplexes and heteroduplexes. Thus the total heteroduplex content for this sample at the time of post-PCR analysis is 1/2 (Fig. 2).

When we add the wild-type DNA to samples before PCR, genotyping will be possible if, after PCR, the heteroduplex content of the mixtures are different between the different genotypes . When the wild-type DNA is mixed with wild-type samples, there will be no heteroduplex content. In contrast, when wild-type DNA is mixed with a homozygous mutant sample, heteroduplexes will be formed at the end of PCR, the amount of which will depend on the amount of wild-type DNA added. If wild-type DNA is mixed with a heterozygous mutant sample, the mixture prior to PCR will now consist of unequal parts of wild-type homoduplexes and mutant homoduplexes. At the end of PCR, a smaller fraction of heteroduplexes will be formed compared to the homozygous mutant mixture. In the example of melting curve analysis, the heteroduplex-enhanced homozygous mutant sample moves away from the wild-type melting curve, while the melting curve of the heteroduplex-reduced heterozygous sample moves toward [the wild type?]. We sought the point where the three curves are best separated.

Estimating the Optimum Theoretical Fraction

The value and location of the maximum difference and the area between curves of the different genotypes and the average of the wild-type replicates were recorded for analysis and comparison with the theory. According to the theory, location of maximum difference is constant, and magnitude of maximum difference, and area under difference are directly proportional to the heteroduplex concentration of the samples.  [unfinished]
Verifying results with High-resolution Melting Analysis

Fig. 4 shows the average calculated values of the maximum difference between the three replicate melting curves of mixtures with homozygous and heterozygous genotypes and the average of the wild-type melting curves, as a function of the mixture fraction. The values are normalized by a scaling which makes the value of pure heterozygous control samples equal to $0.5$. This corresponds to the concentration of heteroduplexes in the theoretical model, which is superimposed on the figures. The squared correlation between the experiment and the model, R^2 ={ (\X \cdot \M )^2 \over (\X \cdot \X ) (\M \cdot \M ) }$ where $\X$ is the vector of experimental values and $\M$ is the vector of model values at the measured mixture fractions. (We do not use the usual formula for $R^2$ in terms of sums of squares,

$1 - { \E \cdot \E   \over  \X \cdot \X } $

where $\X + \E = \M$,

which requires $\M$ to be the best fit of the experimental data satisfying the orthogonality condition

$||\M||^2 + ||\E||^2 = || \X || ^2$, or

$(\M \cdot \E)=0$. Even though $\M$ is not the best fit, the squared correlation coefficient values satisfy R^2>.99$ for the heterozygous samples, and $R^2>.98$ for the homozygous samples.

Fig. 5a shows the standardized melting curves corresponding to the optimal $4/28$ mixture fraction. The replicates cluster indistinguishably, appearing as one curve, and the three genotypes are equally separated. They may easily be classified by the observer's eye or by automatic classification  software. This is a vast improvement from the Fig. 1 in which replicates of the homozygous SNP and the wild-type samples overlapped each other completely.

For comparison, Fig. 5b and 5c show the standardized melting curves corresponding to mixture fractions $9/28$ and $14/28$, in which it is again difficult to distinguish the homozygous and heterozygous samples as our model predicts. Fig. 5d show the melting curves at mixture fraction $19/28$ near where they are again best separated, albeit in a different order.

This demonstrates the importance of the correct mixture fraction. Using equal proportions, or just any small proportion such as $1/3$ gives no improvement on the original results with no mixing at all!

Fig. 6 shows experimental difference curves between wild-type melting curves and the other two genotype melting curves at two values of $x$, $x=0$, or no added DNA (Fig. 6a) and at the optimal value $x=4/28$ (Fig. 6b). In both case, the shape and magnitude agree nicely with the theoretical melting curves and the  predictions of our model.
 [This section needs cleaning up]
.



Verifying results with TGCE
In TGCE, duplexes in a sample are separated by gel electrophoresis and detected as they pass an end-point detector. Each duplex species has a characteristic arrival-time distribution depending on its conformation. In actuality, this is measured as the frequency of duplex arrivals per frame. Usually, heteroduplex peaks are significantly delayed and broader compared to homoduplex peaks. 

The two heteroduplex peaks are usually separated from the homoduplex peak and often, also from each other. These peaks exhibit simple mathematical behavior which makes it possible to separate and quantify the relative contributions of the heteroduplexes. A simple exponential distribution formula was used to simulate peak shape. The fit parameters of each peak remained nearly invariant when the window of points used for the fit was varied in size and distance from the peak, suggesting that this model is reasonable.
The observed arrival frequency before each peak did not have the strict cutoff behavior of the exponential distribution, as some increase above background was seen one frame before the maximum of the first arrival peak. However, no increase above background could be seen two frames before the first arrival peak. Based upon this model, we could solve for the combined amplitudes and decay rate of homoduplex concentrations contributing to the first arrival peak, and by successive subtraction, iteratively solve for the amplitudes of subsequent peaks. Because of the large dynamic range of the peaks and [low number of data acquisition?], the quantitative results might be expected to be sensitive to the fitting process. 
For example, we approximated the start of each exponential sub-distribution with the frame of the maximum measured value, even though actual peak is located somewhere between this frame and an adjacent one. In spite of this sensitivity, we found that the decay rates of different peaks were nearly independent of duplex species, peak amplitude, fitting window and method, which provided additional confidence in the model. 

Once the constituent peak amplitudes were quantified, the heteroduplex proportion was determined by first computing the ratio of the sum of the derived amplitudes of the two heteroduplex peaks to the sum of these plus the amplitude of the combined homoduplex peak. This ratio was then adjusted by a factor close to 1 which made the same ratio determined from heteroduplex control samples equal to the expected value of 0.5.

Fig. 7 shows normalized TGCE data for three replicates of mixtures with each genotype at the theoretically optional mixture fraction of [change this to 1/7] over a range of frames beginning with frame $1000$ and containing all of the peaks. The heteroduplex contents of the homozygous mutant and heterozygous genotypes are clearly distinct at this mixture fraction, while at the suboptimal 9/28 mixture fraction, homozygous and heterozygous mutants were not distinguished (data not shown). 

In Fig. 8, plotted against the mixture fraction are the calculated heteroduplex proportions of each mixed preparation obtained in triplicate from homozygous and heterozygous samples . Once again, the squared correlation coefficients between the experimental data and the model are high, with R^2> .97 for both heterozygous and homozygous samples. Agreement between the results of TGCE analysis and melting curve experiments and the theory suggests that quantitative TGCE (qTGCE) estimation of heteroduplex content of mixed or pooled samples is indeed feasible and informative.

The experimental results confirm the main points of the theory. The maximum difference between melting curves and the heteroduplex concentrations inferred from TGCE experiments agree with each other and with the theoretical predictions of heteroduplex concentration with considerable accuracy over a wide range of mixture fractions. The area between melting curves and the location of the maximum difference between curves also behave as predicted. The plots of these quantities follow the quadratic behavior of the model qualitatively over the entire range, and are quantitatively close over a range of mixture fractions up to one-half (14/28) of the total.

Where the data deviates from the model above this [which?] mixture fraction, there is a definite trend for heteroduplex concentrations estimated from TGCE and corresponding melting curve differences to be larger than those predicted by the theory [for a given mixture fraction delete this?]. Because the heteroduplex concentration vs. mixture fraction curves for both the heterozygous and heterozygous unknowns are decreasing for mixture fractions greater than 14/28, the inferred experimental values correspond to mixture fractions lower than those we prepared experimentally. So one possible source of such a trend could be that the actual fraction of additional wild-type DNA fell short of the intended value as that value grew beyond one-half.  Selective amplification (unequal efficiencies) in PCR or amplification of initial variations that diminish final concentration of wild-type DNA at higher concentrations could have such an effect.  If complementary and nearly-complementary strands anneal preferentially rather than independent of their differences, the assumptions of the model would be violated, although it would be surprising if such a bias favored more rather than less heteroduplex formation. Regardless of these subtle deviations from close agreement  with a fairly simple model, the ultimate test of our method is given by the ease with which the simple melting curve approach to can be used to genotype the optimally mixed samples, in contrast to unmixed or non-optimally mixed ones. [Logic not so convincing, Need rephrasing in multiple parts]
Need Overall Discussion & Stronger Ending
· The optimum is 1/7. How widely would this apply?

· Theory may apply independent of amplicon size (although in general, genotyping is done on relatively short fragments)

· Suboptimal mixing ratios

