Step 2:

If P^{\prime} is on the positive x-axis along the line $\overline{O^{\prime} R^{\prime}}$ as show in Figure 11, the axis of rotation is that obtained from equation (1) but rotated by $\omega=\mathbf{f}\left(\frac{\overrightarrow{\left.\right|^{\prime} \mathbf{P}^{\prime} \mid}}{} \underset{\left|O^{\prime} \mathbf{R}^{\prime}\right|}{ }\right)$ degrees about the y-axis. Namely,

$$
\vec{a}(x, y, z)=\left[-\sin \left(\tau^{\prime}\right) \cos \left(\tau^{\prime}\right) 0\right] \cdot\left[\begin{array}{ccc}
\cos f(\omega) & 0 & -\sin f(\omega) \tag{2}\\
0 & 1 & 0 \\
\sin f(\omega) & 0 & \cos f(\omega)
\end{array}\right]
$$

where $\left|\overrightarrow{O^{\prime} P^{\prime}}\right|$ and $\left|\overrightarrow{O^{\prime} R^{\prime}}\right|$ are the length of the (2-D) vector $\overrightarrow{O^{\prime} P^{\prime}}$ and the line $\overline{O^{\prime} R^{\prime}}$ respectively, and $f(x)$ can be any monotonically-increasing function with conditions:

$$
f(x)=\left\{\begin{array}{ccc}
0^{\circ} & \text { if } & x \leq 0 \\
90^{\circ} & \text { if } & x \geq 1
\end{array}\right.
$$

The function $f(x)$ describes how the hemisphere is distorted into the flat disk. The Virtual Sphere controller in the experiments used $f(x)=x$, with the above constraints. Note that if $\overrightarrow{\mathbf{O}^{\prime} P^{\prime}} \boldsymbol{\prime}=0$, equation (2) is the same as equation (1). If $\overrightarrow{O^{\prime} P^{\prime} \mid}=\left|\overrightarrow{O^{\prime} R}\right|$, then the axis of rotation is on the $y-z$ plane.

Figure 11. Movement of the 2-D device where P^{\prime} is on $\overline{O^{\prime} R^{\prime}}$.

Step 3:

In the general case (see Figure 12),
$\begin{array}{lllc}\overrightarrow{\mathbf{O}^{\prime} \mathbf{P}^{\prime}} & \text { makes angle } & \theta^{\prime} & \text { with the } x \text {-axis, and } \\ \overrightarrow{\mathbf{d}} & n & n & \theta^{\prime}+\tau^{\prime}\end{array}$
Since Figure 12 is just Figure 11 rotated by θ^{\prime} degrees about the z-axis, the axis of rotation is that obtained from equation (2) excepted rotated by θ^{\prime} degrees about z. Namely,

$$
\begin{gather*}
\overrightarrow{\mathbf{a}}(x, y, z)=\left[-\sin \left(\tau^{\prime}\right) \cos \left(\tau^{\prime}\right) 0\right] \cdot\left[\begin{array}{ccc}
\cos f(\omega) & 0 & -\sin f(\omega) \\
0 & 1 & 0 \\
\sin f(\omega) & 0 & \cos f(\omega)
\end{array}\right] \\
\cdot\left[\begin{array}{ccc}
\cos \theta^{\prime} & \sin \theta^{\prime} & 0 \\
-\sin \theta^{\prime} & \cos \theta^{\prime} & 0 \\
0 & 0 & 1
\end{array}\right] \tag{3}
\end{gather*}
$$

Figure 12. Movement of the 2-D device where \mathbf{P}^{\prime} is arbitrarily located.

Once the axis of rotation is obtained from equation (3), the rotation matrix \mathbf{R} can be computed by:

$$
\mathbf{R} \overrightarrow{\mathbf{a}}(\varphi)=\left[\begin{array}{ccc}
t a_{x}^{2}+c & \operatorname{ta} a_{x} y_{y}+s a_{z} & \operatorname{ta}_{x} a_{z}-s a_{y} \tag{4}\\
t a_{x} a_{y}-s a_{z} & \operatorname{ta} y_{y}^{2}+c & t a_{y} a_{z}+s a_{x} \\
t a_{x} a_{z}+s a_{y} & t a_{y} a_{z}-s a_{x} & t a_{z}^{2}+c
\end{array}\right]
$$

where a_{x}, a_{y} and a_{z} are the components of $\vec{a}, s=\sin \varphi, c=\cos \varphi$, and $t=1-\cos \varphi$, and φ is the amount of rotation about $\vec{a}[7]$.

The angle of rotation φ can simply be the distance of cursor movement times a suitable scaling factor. However, we decided to model the rolling of the sphere more precisely. We scaled the amount of rotation such that:

1) a full sweep of the mouse across the circle (passing through O^{\prime}) produces 180 degrees of rotation;
2) a full circle around the edge (or outside) the circle produces 360 degrees of rotation.

The following formula for φ in degrees (obtained empirically) was used in the experiment, and provides a good approximation to the two desirable properties described above:

$$
\begin{equation*}
\varphi=90^{\circ} * \frac{|\vec{d}|}{\mid \overline{O^{\prime} R^{\prime} \mid}}\left\{1-\left(1-\frac{0.2}{\pi}\right) \frac{\omega}{90^{\circ}}\left(1-\left|\cos \tau^{\prime}\right|\right)\right\} \tag{5}
\end{equation*}
$$

