Math 6790: Case Studies in CES and Math

Implementation of a Pattern matching algorithm for searching nucleotide or amino acid sequence patterns in genome and protein based databases
Priya Mahajan

pmahajan@cs.utah.edu

Pattern matching algorithms have been used for searching nucleotide or amino acid sequence patterns in genome and protein sequence databases. The paper that I have implemented presents a new algorithm for pattern-matching which is considerably faster and more efficient than the various other algorithms (such as Boyer-Moore, Quick-search, Raita and Horspool) currently in use. Full details of the algorithm and comparison with the methods described above are described elsewhere1.

Basic algorithm
Assuming we have a sequence Y = (y1 y2 ….. yn), and a pattern X = (x1 x2…. xm) with

‘n’ being the length of the alphabet and ‘m’ being the length of the pattern.
Preprocessing stage
In the preprocessing stage, all the letters of the sequence are traversed and a table is created called the quick-search bad-character shift table (qsBc). The qsBc shift number for a character is the position at which it appears in the pattern while reading from left to right. If a character doesn’t appear in the pattern it’s shift number is given by (m+1).

After the preprocessing stage, the algorithm moves into the following stages.

Stage 1: The last character of the pattern and the corresponding character of the sequence are compared, if they match then the first letter of the pattern and the corresponding first letter of the sequence are compared. If they match, the algorithm moves into Stage 2 else it goes into Stage 3.

Stage 2: The letters are then compared from right – left until a mismatch or a full match occurs. If a mismatch occurs, the algorithm moves into stage 3, while for a match, the position at which the match occurs is printed out on the screen.
Stage 3: The amount of shift to take place is now calculated by referring to the qsBc table for the character immediately following the pattern placement on the alphabet.

Implementation

The implementation of this algorithm is carried out in Java version 1.4.2_07. The user interface is implemented in Java Swing. It is a very simple interface allowing the user to enter in a sequence and a pattern which they wish to search for. Rudimentary validations have been coded into the program.
To test the program, two sequences from ftp://ftp.ncbi.nih.gov/genomes/H_sapiens were tested. Both the sequence strings are in FASTA format.
The first sequence (ftp://ftp.ncbi.nih.gov/genomes/H_sapiens/protein) is a part of the gene sequence (only 47 residues from a gene sequence consisting of 136 amino acid residues) has been used

>gij4504279jrefj NP_002098.1j H3 histone, family 3A [Homo sapiens] MARTKQTARKSTGGKAPRKQLATKAARKSAPSTGGVKKPHRYRPGTVALREIRRYQKSTELLIRKLPFQRLVREIAQDFKTDLRFQSAAIGALQEASEAYLVGLFEDTNLCAIHAKRVTIMPKIQLARRIRGERA
the pattern that was matched is KAPRKQL
The second sequence (ftp://ftp.ncbi.nih.gov/genomes/H_sapiens/CHR_01/) is a part of the chromosome 1 data, details are given below
>gi|51459514|ref|NT_086569.1|Hs1_86264 Homo sapiens chromosome 1 genomic contig, alternate assembly

CTGTCAGCCCGGTTTTCAAGGAGCACACACCAAAAATGCACCAAAGCTTACATCCATACAAACACCCGCACATGGATGTTTATGGAAGCTTATTTGTTTTTATTCATAATCACCCAAACTCAGAATCAACCAAGATGTCCTTCAGTAGATGAATGGATAAACTGTGGTGTGTCCAGGCAGTGGAATATTATTCAACGCAAAAAGAAATGAGCTATCAAGGCATGAAAAAAT
the pattern that was matched is GTCAGCCC.
Installation and running instructions
To install the application (assuming java version 1.4.2_05/1.4.2_07)
1. Unzip the file project.zip. It will create a file folder Project with some folders underneath

· src: contains the .java source files

· Readme.txt

· pattern.jar: contains the .class files of the source code and also the look and feel classes

2. cd into the project folder.

3. java -jar pattern.jar

 will run the application
User interface usage instructions
1. Upon running the program the user interface (Figure 1) will be displayed on the screen.

[image: image1.png]Implementation of a Pattern Match Algorithm: Priya Mahajan Math 6790 [=[ofx]

Insert Sequence

Insert Pattern

Resuls:

Figure 1: User interface for the pattern matching algorithm

2. Insert the sequence and pattern into the appropriate text fields as shown below in Figure 2. The sequence used here is
CTGTCAGCCCGGTTTTCAAGGAGCACACACCAAAAATGCACCAAAGCTTACATCCATACAAACACCCGCACATGGATGTTTATGGAAGCTTATTTGTTTTTATTCATAATCACCCAAACTCAGAATCAACCAAGATGTCCTTCAGTAGATGAATGGATAAACTGTGGTGTGTCCAGGCAGTGGAATATTATTCAACGCAAAAAGAAATGAGCTATCAAGGCATGAAAAAAT
And the pattern is GTCAGCCC

[image: image2.png]Implementation of a Pattern Match Algorithm: Priya Mahajan Math 6790 [=[ofx]

Insert Sequence

[CTGTCAGCCCOGTTTTCAAGGAGCACACACCARAAATGCACCARAGCTTACATCCATACH

Insert Pattern

[TcaccCe

Resuls:

Figure 2: Inserted sequence and pattern
3. Click on the ‘Search’ button. The results of the algorithm will be displayed in the area next to the ‘Results:’ label. The text area below will display the original sequence with the matched pattern displayed in a bold font. This is shown in Figure 3 below.

[image: image3.png]Implementation of a Pattern Match Algorithm: Priya Mahajan Math 6790 [=[ofx]

Insert Sequence

[CTGTCAGCCCOGTTTTCAAGGAGCACACACCARAAATGCACCARAGCTTACATCCATACH

Insert Pattern

[TcaccCe

Resuls: Match at positions:
€]

[Total steps: 47

[Total number of character comparisons: 100

CTGTCAGCCC
GGTTTTCAAGGAGCACACACCAMARTGCACCARAGCTTACATCCATACARACACCCGC
ACATGOATGTTTATGGAAGCTTATTTGTTTTTATTCATAATCACCCARCTCAGAATCAAC
CAAGATGTCCTTCAGTAGATGAATGOATARACTOTOGTGTGTCCAGGCAGTOOARTATT
ATTCAACGCAAAAAGARATGAGCTATCARGGCATGAMAMT

o] (comee]

Figure 3: Results
References:

1. Sheik, S.S.;Aggarwal, S.K.;Poddar, A.;Balakrishnan, N.;Sekar, K A FAST Pattern Matching Algorithm, J. Chem. Inf. Comput. Sci. 2004, 44, 1251-1256.

