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We outline numerical characterization of DNA primary sequence based on calculation of the average distance
between pairs of nucleic acid bases. This leads to a representation of DNA by a condensed 4× 4 symmetrical
matrix, the elements of which give the average separation between pair of bases X, Y in DNA (X, Y) A,
C, G, T). As an invariant of choice we consider the leading eigenvalue of the derived 4× 4 matrix. Additional
structurally related invariants were obtained by constructing additional “higher order” 4× 4 matrices derived
from the initial 4× 4 matrix by raising its elements to higher powers. Suitably normalized leading eigenvalue
of these matrices offer a novel characterization of DNA primary sequences, referred to as “DNA profiles”.
The approach is illustrated on exon 1 of humanâ-globin gene.

1. INTRODUCTION

An important task in analyzing available DNA data is to
estimate the degree of similarity between finite sets of strings
of nucleic bases. The standard procedures consider differ-
ences between strings due to deletion-insertion, compres-
sion-expansion, and substitution of the string elements.1-9

These approaches have been applied to a variety of problems,
from the error correcting codes in which Levensthein has
introduced metrics for string comparisons1 to comparison of
DNA sequences, comparison of protein sequences, and
applications in quantitative structure-activity relationship
(QSAR).8,9 Such approaches, that have been hitherto widely
used, are computer intensive. We have recently proposed
an alternative approach for comparison of sequences that is
based on characterization of DNA by ordered sets of
invariants derived for DNA sequence, rather than by a direct
comparison of DNA sequences themselves. This is analogous
to use of graph invariants (topological indices) for charac-
terization of molecules rather than use of information on their
geometry and types of atoms involved. An important
advantage of the characterization of structures (be it small
molecule or a macromolecule like DNA) by invariants, as
opposed to the use of strings, is the simplicity of the
comparison of numerical sequences based on invariants. The
price paid, however, is a loss of information on some aspects
of the structure that accompany any characterization based
on invariants.10 The loss of information, however, can be
compensated in part by the use of a larger number of
descriptors (invariants), as has been well illustrated in the
QSAR model based on mathematical descriptors for
molecules.11-14

The central problem to consider, if one is to use set of
structural invariants instead of the structural codes, is how

to find suitable invariants to characterize a given primary
sequence of DNA. A way to arrive at structural invariants
for a sequence is to associate a matrix with the sequence.
Once a matrix has been constructed we can use a selection
of matrix invariants as descriptors, which, upon ordering,
offer a numerical characterization of the sequence. Recently
construction of several matrices associated with DNA have
been outlined,15-20 based on graphical representations of
DNA. Graphical representations of DNA have received some
attention in the literature.21-27 They result in a geometrical
structure that is embedded either in a two- or three-
dimensional space. A two-dimensional representation of
DNA is obtained by assigning to the four nucleic bases the
directions along the positive and negative x and y axes.15

Alternately, if one assigns to the four nucleic acids the four
tetrahedral direction in 3D space16 one obtains a three-
dimensional representation of DNA. From graphical repre-
sentations of DNA one can construct a matrix representing
DNA by calculating the Euclidean (through space) and the
graph theoretical (through bonds) distances between all pairs
of nucleic acid bases.

One can associate a matrix with DNA also without the
use of graphical representations of DNA. One way to obtain
a matrix not associated with graphical representation of DNA
is to consider directly the primary sequence and to assign to
each nucleic acid base two numbers: one number giving
the position of a base in the DNA sequence and the other
giving the position of a base in the subsequence of nucleic
acid bases of the same kind. In Tables 1 and 2 we have
illustrated these indicator numbers for exon 1 of human
â-globin gene (92 bases). Using such labels we can represent
the DNA sequence as a numerical sequence. For example, a
portion of the DNA sequence corresponding to adenine (A)
leads to the following numerical sequence:18
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Similar sequences of length 19, 35, and 21 can be constructed
for the remaining nucleic acids C, G and T, i.e., CC, GG,
and TT, having 17, 19, 35, and 21 rows and columns. We
will briefly return to these symmetric square matrices later
(see section 7).

Still another way to obtain a matrix associated with a DNA
primary sequence is to count the frequency of occurrences
of pairs of bases X-Y at various separations. The frequency
of X-Y bases, when summarized, leads to a reduced 4× 4
matrices for DNA sequence, each of such matrices giving
information on nucleic acid bases separated by different
distances.17

In this paper we will consider the distances between pairs
of nucleic acid bases rather than the frequency of the various
pairs. We will show how the average distances between pairs
of bases lead to a set of novel numerical invariants for the
characterization of DNA.

We should mention that matrices have been used for
convenient book-keeping of matching, mismatches, and
deletions of a base or bases in a search for the best alignment
of two sequences.28-30 However, in such studies a matrix is
always associated with two different sequences, not a single
DNA sequence. In addition, such matrices were not analyzed
for their properties relevant to the characterization of
structure, such as construction and selection of invariants.
Derivation of structural invariant for the complete charac-
terization of DNA sequence is the hallmark of this paper.

2. REDUCED DNA MATRICES

A direct base-by-base transformation of a primary DNA
sequence to a matrix will result in a matrix having many

rows and columns. Such matrices need not offer immediately
useful numerical insights into specifications of a particular
DNA sequence. We are interested in numerical characteriza-
tion of DNA and it seems desirable to construct reduced
matrices which summarize information on DNA sequence
as a whole, rather than using matrices based on extensive
information relating to each individual pair of bases. By
considering separately pairs of nucleic bases one can
summarize pertinent information in a very condensed 4× 4
matrix of the following form:

Here the individual elements XY relate to the information
on the pair of bases X and Y. If the order of bases is not
critical for the property considered, that is if XY is considered
the same as YX, one obtains in this way a symmetric 4× 4
matrix. Otherwise the 4× 4 matrix would be nonsymmetri-
cal, as was the case with the 4× 4 matrices obtained when
considering the frequency of a nucleic base X followed by
base Y separated by distance d.18

The idea of a condensed 4× 4 matrix can be further
extended by considering triplets XYZ of nucleic acids.20 In
such a case one obtains a cubic “matrix”, the elements of
which are indicated by a triplet of subscripts i, j, k. The
resulting “matrix” summarizes information on all 64 possible
triplets of combinations of three nucleic base sequences,29

starting with AAA and ending with TTT. In this work we
will use 4× 4 reduced matrices shown above in which the
matrix element XY represents the average distance between
X and Y in a segment of DNA considered. We will illustrate
the characterization of DNA by such a matrix on exon 1 of
humanâ-globin gene (Table 1). Hence, we will condense
information contained in the segment of DNA which has 92
bases to a 4× 4 matrix from which subsequently we will
extract several structural invariants to be used as DNA
descriptors.

3. AVERAGE X-Y BASE DISTANCE

Invariants derived from the graph theoretical distance
matrix have found considerable application in the quantitative
structure-activity relationship (QSAR) and the quantitative
structure-property relationship (QSPR), respectively.3-38

One of the simple such invariants is the Wiener number,39

W, which is given as the sum of the matrix elements of the
distance matrix above the main diagonal.40 It differs from
the average matrix element of the distance matrix only by a
constant of proportionality. The distance matrix D(i, j) of a
graph G was introduced in graph theory by Harary.41 Its (i,
j) element is defined by the length of the shortest path
between vertices i and j. In linear structures, such as a string
of nucleic acid bases of DNA, the distance between two sites
is simply given by the difference of the corresponding
sequence numbers. The Wiener number W continues to be
used in chemical graph theory.42 For acyclic molecules of a
similar size (e.g. isomers) W is an indicator of the degree of
molecular branching.43-45 However, this interpretation has
limitations and better alternative characterization of branching
not based on the Wiener number was considered since.46-49

Table 1. Exon-1 of Human Beta Globin Genea

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
A T G G T G C A C C T G A C T
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
C C T G A G G A G A A G T C T
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
G C C G T T A C T G C C C T G
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
T G G G G C A A G G T G A A C
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
G T G G A T G A A G T T G G T
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
G G T G A G G C C C T G G G C
91 92
A G

a The nucleic bases are grouped in groups of five for better visibility.

Table 2. Same DNA Sequence Shown in Table 1 with Sequential
Labels That Count Each of the Nucleic Acid Types Separately

1 1 1 2 2 3 1 2 2 3 3 4 3 4 4
A T G G T G C A C C T G A C T
5 6 5 5 4 6 7 5 8 6 7 9 6 7 7
C C T G A G G A G A A G T C T
10 8 9 11 8 9 8 10 10 12 11 12 13 11 13
G C C G T T A C T G C C C T G
12 14 15 16 17 14 9 10 18 19 13 20 11 12 15
T G G G G C A A G G T G A A C
21 14 22 23 13 15 16 14 15 24 17 18 25 26 19
G T G G A T T A A G T T G G T
27 28 20 29 16 30 31 16 17 18 21 32 33 34 19
G G T G A G G C C C T G G G C
17 35
A G

AA AC AG AT
CA CC CG CT
GA GC GG GT
TA TC TG TT
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As several papers have pointed out the distance matrix
for characterization of molecules has some limitations,50,51

because more distant elements are represented by larger
entries in such matrix, while the opposite seems desirable.
This led to consideration of a matrix of reciprocal distances
and similar modifications.52-56 On the other hand in view
of the wide use and application of distance matrix and
distance based invariants, it seems desirable to investigate
distances properties associated with strings of nucleic acid
bases in DNA as these may lead to analogous distance-based
invariants to be used to characterize DNA sequences.

To illustrate the approach in Table 2 we have collected
the distances between all pairs A-A measured along the
DNA chain in of exon 1 of Table 1. Because base A occurs
17 times in the DNA sequence, we obtained a symmetric
17 × 17 the distance matrix AA, of which we have only
shown the lower portion. From this 17× 17 matrix we can
evaluate the average matrix element by summing all the
entries in the matrix and dividing it by 172, which is 8564/
289) 29.633218. Observe that we included in the count of
all distances between the A-A pairs also the zero A-A
distances along the main diagonal. Hence, in making the
average we have 172 in the denominator for the fraction
shown. For the same 17× 17 matrix the Wiener number is
4287, which when doubled gives 8564, which appears in
the numerator of the fraction shown above.

The reason for including the zero distances (the paths of
length zero) becomes more apparent when one considers the
complete distance matrix for exon 1 (Table 1) which would
be of size 92× 92. The 17× 17 matrix AA of Table 3 is
the part of the 92× 92 distance matrix rearranged so that
its elements are partitioned into the rectangular submatrices
associated with individual pairs of XY bases as shown below:

The dimensions of these rectangular matrices are given by
the frequency of the nucleic bases of each type. As mentioned
before it is only along the diagonal that we have quadratic
submatrices with zero diagonal entry, the size of which is
given similarly by the total number of the corresponding
bases.

In Table 4 we illustrate the AC rectangular submatrix that
records the distance between adenine (A) and cytosine (C).
It has 17 columns and 19 rows corresponding to the number
of A and C, respectively. The difference between the
successive rows in the AC submatrix is constant for all the
rows and the columns till the position in the column when
the row label becomes bigger than the column label. Then
the sense of the difference is reversed and the relative
magnitudes of successive rows or columns are reversed. A
similar regularity can be found also for the difference
between the successive columns, except for the rows which
have a label that is larger than the first column and smaller
than the next column when instead of the difference we have
a constant sum. These regularities may help one to find
numerical errors if the distance submatrices are not con-
structed by computer. In the case of the AC submatrix shown
in Table 4, the sum of all 17× 19 matrix entries is 9994,
which gives the average value of the matrix element of AC
submatrix 9994/(17× 19)) 30.941176. In Table 5 (top part)
we have collected all XY average elements (X, Y) A, C,
G, T) for the distance matrix of the exon 1 of the human
â-globin gene. As a result we obtain a symmetrical 4× 4
matrix, the construction of the first two elements of which
has been outlined above.

The elements of the derived condensed matrix represents
a considerable contraction of the information of the DNA
sequence considered. So the following question can be
immediately raised: does such a drastically simplified matrix
contain enough compositional information to be useful when

Table 3. Submatrix That Is Collecting Information on All A-A
Separation Distances in the Primary DNA Sequence of Table 1

1 8 13 20 23 25 26 37 52 53 58 59 65 68 69 80 91

1 0
8 7 0

13 12 5 0
20 19 12 7 0
23 22 15 10 3 0
25 24 17 12 5 2 0
26 25 18 13 6 3 1 0
37 36 29 24 17 14 12 11 0
52 51 44 39 32 29 27 26 15 0
53 52 45 40 33 30 28 27 16 1 0
58 57 50 45 38 35 33 32 21 6 5 0
59 58 51 46 39 36 34 33 22 7 6 1 0
65 64 57 52 45 42 40 39 28 13 12 7 6 0
68 67 60 55 48 45 43 42 31 16 15 10 9 3 0
69 68 61 56 49 46 44 43 32 17 16 11 10 4 1 0
80 79 72 67 60 57 55 54 43 28 27 22 21 15 12 11 0
91 90 83 78 71 68 66 65 54 39 38 33 32 26 23 22 11 0

AA AC AG AT 17 × 17 17× 19 17× 35 17× 21
CA CC CG CT 19× 17 19× 19 19× 35 19× 21
GA GC GG GT 35× 17 35× 19 35× 35 35× 21
TA TC TG TT 21× 17 21× 19 21× 35 21× 21

Table 4. Submatrix That Is Collecting Information on All A-C
Separation Distances in the Primary DNA Sequence of Table 1

1 8 13 20 23 25 26 37 52 53 58 59 65 68 69 80 91

7 6 1 6 13 16 18 19 30 45 46 51 52 58 61 62 73 84
9 8 1 4 11 14 16 17 28 43 44 49 50 56 59 60 71 82

10 9 2 3 10 13 15 16 27 42 43 48 49 55 58 59 70 81
14 13 6 1 6 9 11 12 23 38 39 44 45 51 54 55 66 77
16 15 8 3 4 7 9 10 21 36 37 42 43 49 52 53 64 75
17 16 9 4 3 6 8 9 20 35 36 41 42 48 51 52 63 74
29 28 21 16 9 6 4 3 8 23 24 29 30 36 39 40 51 62
32 31 24 19 12 9 7 6 5 20 21 26 27 33 36 37 48 59
33 32 25 20 13 10 8 7 4 19 20 25 26 32 35 36 47 58
38 37 30 25 18 15 13 12 1 14 15 20 21 27 30 31 42 53
41 40 33 28 21 18 16 15 4 11 12 17 18 24 27 28 39 50
42 41 34 29 22 19 17 26 5 10 11 16 17 23 26 27 38 49
43 42 35 30 23 20 18 17 6 9 10 15 16 22 25 26 37 48
51 50 43 38 31 28 26 25 14 1 2 7 8 14 17 18 29 40
60 59 52 47 40 37 35 34 23 8 7 2 1 5 8 9 20 31
83 82 75 70 63 60 58 57 46 31 30 25 24 18 15 14 3 8
84 83 76 71 64 61 59 58 47 32 31 26 25 19 16 15 4 7
85 84 77 72 65 62 60 59 48 33 32 27 26 20 17 16 5 6
90 89 82 77 70 67 65 64 53 38 37 32 31 25 22 21 10 1

Table 5. Condensed 4× 4 Matrix: the Elements of Which Show
the Average Separation between X-Y Nucleic Acid Bases (X, Y)
A, C, G, T)a

AA AC AG AT 29.633218 30.941176 30.998319 29.708683
CC CG CT 30.116343 32.348872 30.441103

GG GT 15.193469 30.394558
TT 28.961451

AA AC AG AT 30.281500 30.806250 31.510714 30.071429
CC CG CT 29.890000 31.871429 30.114286

GG GT 15.193469 30.394558
TT 28.961451

a The top part corresponds to the DNA sequence of Table 1, and
the bottom part corresponds to the hypothetical DNA sequence in which
adenine at the position 58 is replaced by cytosine.
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comparing different DNA sequences. That drastically con-
densed representation of complex systems can have useful
information has been recently demonstrated by several
researchers57,58who were able to arrive at a useful summary
for properties of structural isomers by considering average
properties of a large set of compounds. More relevant for
our case are the characterizations of molecules using the so-
called molecular “profiles”.59-63 Because a single invariant
may not suffice to characterize complex systems, design of
an additional set of invariants seems desirable. In particular
it is desirable to have invariants which are related structurally,
rather than just having a set ofad hocderived invariants.
Molecular profiles represent one such set of structurally
related invariants. They are constructed from a set of “higher
order” matrices representing a molecule again by averaging
matrix elements. They can be viewed as components of a
vector giving a “profile” of the sequence considered. The
structurally related matrices are derived using suitable
algebraically manipulations of the matrix elements of the
initial distance matrix, as will be outlined in the next section.

4. INVARIANTS OF REDUCED MATRICES

From the 4× 4 matrix of Table 4 we can select several
matrix invariants, including the following: the eigenvalues,
the average matrix element, the average row sum, the
maximal row sum, the minimal row sum, the determinant,
the trace (the sum of the diagonal elements), and if desired
the coefficients of the characteristic polynomial, etc. The
maximal and the minimal row sum represent, according to
the theorem of Frobenius-Perron,64 the upper and the lower
bounds on the leading eigenvalue of a matrix. In Table 6
we listed several of the above-mentioned invariants for the
4 × 4 matrices of Table 5. Observe how close are the
magnitudes of the average row sum and the leading eigen-
value, which is a consequence of the fact that individual
matrix elements (except for the instance of CC element) are
of similar magnitude. Hence, when the individual matrix
elements of the 4× 4 matrix do not differ much, the average
row sum may offer a satisfactory estimate of the leading
eigenvalue.

In the following we will here consider only the leading
eigenvalue of the reduced matrix as the invariant used for
characterization of DNA. The leading eigenvalue of matrices
associated with a molecular graph have found useful
interpretations. Lovasz and Pelikan pointed to the use of the
leading eigenvalue of the adjacency matrix as a measure of
branching.65 Randić, Kleiner, and DeAlba66 have interpreted
the leading eigenvalue of the so-called D/D matrix (the

elements of which are given as quotient of the Euclidean
and graph theoretical distances for an embedded graph in
3D space) as an index of molecular folding. In another study
Randić, Vračko, and Novič67 related the leading eigenvalue
of the line adjacency matrix of an embedded graph as a
measure of molecular flexibility. More recently, the leading
eigenvalue of the path matrix68 was found to offer an even
better, or at least more discriminatory, characterization of
molecular branching.48,49The leading eigenvalue of the D/DD
matrix (the elements of which are constructed as the quotient
of the corresponding elements of the distance matrix (D) and
the detour matrix (DD))41,69-73 was suggested as a measure
of molecular cyclicity.74,75In view of the apparent structural
significance of the leading eigenvalues of various matrices
associated with chemical structures it seems worthwhile to
explore the use of the leading eigenvalues of condensed DNA
matrices for the characterization of DNA. In passing we
should add that other eigenvalues, even eigenvectors, have
been considered as a source for construction of topological
indices.76

5. CONSTRUCTION OF THE LEADING EIGENVALUES
“PROFILE” OF THE DNA

Besides the well-known standard product of two matrices
A B in matrix algebra one can consider also the product A∧B
(also referred to as Kronicker’s product) defined by multiply-
ing the element aij of matrix A and the element bij of matrix
B.77 If A ) B we obtain from matrix A matrix2A, the
elements of2A are given by the squares of the elements of
the original matrix, i.e.,2aij ) (aij)2. The leading eigenvalue
of this matrix (2λ1) is an additional structural invariant that
can be used for characterization of the primary sequence of
DNA. The process can be continued and in addition to2A
one can construct a set of matriceskA by repeatedly
multiplying 2A matrix by A, etc. In this way we obtain a
matrices A,2A, 3A, 4A, 5A, 6A, ... which yield as invariants
an ordered set of the leading eigenvaluesλ1, 2λ1, 3λ1, 4λ1,
5λ1, 6λ1, ....

Because matrix elements of2A, and other higher order
matrices, continue to increase in magnitude upon exponentia-
tion the corresponding leading eigenvaluesmλ1 also increase

Table 6. Selection of Matrix Invariants Derived from Condensed 4
× 4 Matrixa

matrix invariant A/C

the maximal row sum 123.281396 122.681965
the minimal row sum 108.935218 108.970170
the average row sum 118.392476 118.465938
the leading eigenvalue 118.638256 118.707621
other eigenvalues: -0.399856 -0.449911

-1.150524 -0.772788
-13.183404 -13.158502

trace (the sum of eigenvalues) 103.904481 104.32642
average matrix element 29.598119 29.616485

a The last column corresponds to the case of A/C substitution.

Table 7. Eigenvalues, the Normalization Factors, and the
Normalized Leading Eigenvalues of the “Higher Order” Condensed
Matricesa

eigenvalue normalization
profile
original

after A/C
substitution

1 118.64 1 118.64 118.71
2 3577.67 1/22 894.42 895.22
3 10,875.22 1/62 3020.89 3023.57
4 3,320,808.00 1/242 5765.29 5768.33
5 101,705,087.43 1/1202 7062.85 7061.40
6 3,121,851,701.12 1/7202 6022.09 6014.04
7 96,005,201,290.02 1/50402 3779.49 3768.59
8 2,957,422,941,020 1/403202 1819.17 1810.29
9 91,249,864,640,008 1/3628802 692.96 687.88

10 2,819,911,366,087,310 1/36288002 214.15 211.95
11 8.728054 1016 1/(11!)2 54.78 54.03
12 2.705684 1018 1/(12!)2 11.79 11.58
13 8.400690 1019 1/(13!)2. 2.17 2.12
14 2.612354 1021 1/(14!)2 0.34 0.33
15 8.136323 1022 1/(15!)2 0.05 0.05
16 2.538064 1024 1/(16!)2 0.01 0.01

a The last column corresponds to the case of A/C substitution.
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in magnitude (see the second column in Table 7). To avoid
a divergent sequence of thekλ1 descriptors we need to
normalize the derived leading eigenvalues. Using (1/n!)2 as
the normalization factor we obtain a converging sequence
of normalized leading eigenvalues of Table 7, which
represents a sequence of invariants that offers a characteriza-
tion of DNA. We will refer to such a constructed sequence
of descriptors/invariants as “DNA profile.”

6. A TEST OF THE SENSITIVITY OF DNA PROFILES

One of the most important questions that characterizes a
system by an invariant, including molecular profiles, is the
sensitivity of the derived invariants to minor changes in the
DNA sequence. To test the sensitivity of the “DNA profile”
we have perturbed the original DNA sequence of Table 1
by replacing a single nucleic base in the position 58, which
was A, by C. For the modified DNA sequence we constructed
the reduced 4× 4 matrix which is shown in Table 5 (the
lower part). The submatrices involving A and C, i.e., the
submatrices AA, AC, AG, AT, CC, CG, CT, and the
corresponding symmetry equivalent submatrices CA, GA,
TA, GC, and TC, which are all the submatrices in the first
two columns and the first two rows, will be affected by the
replacement of a single A by C. As we see by a comparison
of the two 4× 4 matrices of Table 5 the individual matrix
elements change significantly, even if not dramatically. The
parts of the 4× 4 matrices corresponding to elements GG,
GT, TG, and TT have not changed (as expected). As a
consequence of introduced changes in matrix elements based
on the “higher order” matrices the invariants listed in Table
6 have changed also. Similarly the DNA profiles have
changed, as can be seen by comparing the last two columns
of Table 7. Because the small difference between the leading
eigenvalues are magnified by recursive multiplication the
difference in magnitudes between the corresponding entries
of two profiles becomes pronounced for the intermediate
section of the profiles corresponding to larger “amplitudes”
of the profiles. If the two profiles are viewed as vectors in
a 16-dimensional space, the Euclidean distance between the
two profiles is 17.69 even though the difference in the leading
eigenvalues was only 0.07.

An alternative characterization of DNA is given directly
by the elements of the 4× 4 matrix, without calculating the
leading eigenvalues. By canonical ordering (here to be taken
to be alphabetical order) from the 10 distant matrix elements

as (AA, AC, AG, AT, CC, CG, CT, GG, GT, TT) we obtain
a vector in a 10-dimensional vector space. In Table 8 we
have listed the component of the two 10-component vectors
corresponding to the two matrices of Table 5. Again we see
that the single substitution of A by C induces, visible even
if not large, change in the magnitudes of the components.
This points to sufficient sensitivity of the 4× 4 considered
matrices of DNA to minor changes in the nucleic bases
composition.

7. NONCOMPACT MATRIX REPRESENTATION OF
DNA

There is no doubt that by condensing a 92× 92 matrix
associated with the primary sequence of DNA of exon-1 of
human beta globin gene to a 4× 4 matrix relating to the

Table 8. Elements of the Condensed Matrix as Components of
10-Dimensional Vector for DNA Sequence of Table 1 and the
Hypothetical Sequence Obtained by Substitution of a Single
Adenine by Cytosinea

original DNA A/C substitution difference

AA 29.6332 30.2815 -0.6483
AC 30.9412 30.8063 +0.1349
AG 30.9983 31.5107 -0.5124
AT 29.7087 30.0714 -0.3627
CC 30.1163 29.8900 +0.2263
CG 32.3489 31.8714 +0.4774
CT 30.4411 30.1143 +0.3268
GG 15.1935 15.1935 0
GT 30.3946 30.3946 0
TT 28.9615 28.9615 0

a The last column shows the difference between the two cases.

Table 9. Four Segments of DNA of Table 1 Each of Length Ten
and the Corresponding Distance Matrices

1 2 3 4 5 6 7 8 9 10
A T G G T G C A C C
1 8 7 9 10 3 4 6 2 5 row sum

1 0 7 6 8 9 2 3 5 1 4 45
8 7 0 1 1 2 5 4 2 6 3 31
7 6 1 0 2 3 4 3 1 5 2 27
9 8 1 2 0 1 6 5 3 7 4 37

10 9 2 3 1 0 7 6 4 8 5 45
3 2 5 4 6 7 0 1 3 1 2 31
4 3 4 3 5 6 1 0 2 2 1 27
6 5 2 1 3 4 3 2 0 4 1 25
2 1 6 5 7 8 1 2 4 0 3 37
5 4 3 2 4 5 2 1 1 3 0 25

11 12 13 14 15 16 17 18 19 20
T G A C T C C T G A
3 10 4 6 7 2 9 1 8 row sum

3 0 7 1 3 4 1 6 2 2 5 31
10 7 0 6 4 3 8 1 9 5 2 45
4 1 6 0 2 3 2 5 3 1 4 27
6 3 4 2 0 1 4 3 5 1 2 25
7 4 3 3 1 0 5 2 6 2 1 27
2 1 8 2 4 5 0 7 1 3 6 37
9 6 1 5 3 2 7 0 8 4 1 37
1 2 9 3 5 6 1 8 0 4 7 45
5 2 5 1 1 2 3 4 4 0 3 25
8 5 2 4 2 1 6 1 7 3 0 31

21 22 23 24 25 26 27 28 29 30
G G A G A A G T C T
3 5 6 9 1 2 4 7 8 10 row sum

3 0 2 3 6 2 1 1 4 5 7 31
5 2 0 1 4 4 3 1 2 3 5 25
6 3 1 0 3 5 4 2 1 2 4 25
9 6 4 3 0 8 7 5 2 1 1 37
1 2 4 5 8 0 1 3 6 7 9 45
2 1 3 4 7 1 0 2 5 6 8 37
4 1 1 2 5 3 2 0 3 4 6 27
7 4 2 1 2 6 5 3 0 1 3 27
8 5 3 2 1 7 5 4 1 0 2 31

10 7 5 4 1 9 8 6 3 2 0 45

31 32 33 34 35 36 37 38 39 40
G C C G T T A C T G
7 2 3 8 1 4 10 5 6 9 row sum

7 0 5 4 1 6 3 3 2 1 2 27
2 5 0 1 6 1 2 8 3 4 7 37
3 4 1 0 5 2 1 7 2 3 6 31
8 1 6 5 0 7 4 2 3 2 1 31
1 6 1 2 7 0 3 9 4 5 8 45
4 3 2 1 4 3 0 6 1 2 5 27

10 3 8 7 2 9 6 0 5 4 1 45
5 2 3 2 3 4 1 5 0 1 4 25
6 1 4 3 2 5 2 4 1 0 3 25
9 2 7 6 1 8 5 1 4 3 0 37
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average distance information for various base pairs we are
bound to lose a considerable amount of detailed information
on DNA. Is there some less drastic option for characterization
of DNA?

To consider this question we will examine several 10×
10 submatrices of the initial 92× 92 distance matrix. In
Table 9 we show four such submatrices corresponding to
the DNA subsequences 1-10, 11-20, 21-30, and 31-40
of the sequence shown in Table 1. We will pretend that these
four cases simulate four DNA sequences in general, though
in fact they represent fragments of a single DNA primary
sequence and illustrate properties of local DNA invariants.

First to observe in Table 9 is that although the four
matrices appear different they in fact represent the same
matrix (shown in Table 10) in which the rows and columns
have been permuted. Such matrices are related by a similarity
transformation S-1 M S and necessarily have identical
eigenvalues. Thus the leading eigenvalue is here of no
particular interest. Neither are the row sums of interest since
again all four matrices have the same individual row sums,
listed only in a permuted order. Consequently, the Wiener
index of the four matrices is the same (W ) 165). In fact W
depends only on the size of such matrices, all matrices of
the same size having the same W given by the table:

The successive increments are given by twice the binomial
coefficient 1, 3, 6, 10, 15, 28, ....

Hence, the complete distance matrix for a string of DNA
basis is not suitable for extraction of sequence invariants.
One way out of this dilemma is to consider the so-called
D/D matrices mentioned earlier, the elements of which are
given as quotients of two distinctive measures imposed on
a sequence. Another possibility is to focus attention to
diagonal submatrices AA, CC, GG, and TT, rather than
considering the whole matrix. As we can see from Table 9
these diagonal submatrices vary in size and magnitudes of

entries from case to case (or from a fragment to a fragment),
thus they may yield useful sequence (or fragment) invariants.

In Table 11 we have constructed the reduced 4× 4
matrices for the four fragment sequences of Table 9. As is
to be expected the reduced matrices, the elements of which
represent normalized average matrix elements, show varia-
tions between different sequence fragments. The leading
eigenvalues of such matrices (or ordered sequence AA, AC,
AG, AT, CC, CG, CT, GG, GT, TT of the average elements)
constitute local sequence invariants. As we see from Table
11 the eigenvalues for the four fragments show considerable
variation in magnitudes.

Finally, let us illustrate on one of 10× 10 matrices how
sensitive are matrix invariants on a replacement of adenine
(A) by cytosine (C). We selected the third matrix of Table
9 where the DNA fragment has only one cytosine base (at
position 9) and three adenine bases (at positions 3, 5, and
6). In Table 12 we show the corresponding 4× 4 matrices,
the row sums, the eigenvalues, the trace, and the determi-
nants. As we see the selected invariants of the 4× 4
condensed matrices are quite sensitive on the location of the

Table 10. 4 × 4 Condensed Matrices, the Row Sums, the Eigenvalues, the Trace, and the Determinant for the Four Segments of DNA of
Table 8

4 × 4 matrix row sum eigenvalues trace det

Fragment 1-10
3.5 4.5 3.5 3.5 15 13.54495 7.66667 -19.3796
4.5 1.33333 4.33333 5.16667 15.33333 -0.30422
3.5 4.33333 1.33333 1.83333 11 -1.03647
3.5 5.16667 1.83333 1.5 12 -4.54495

Fragment 11-20
3.5 3.5 4 4.16667 15.16667 13.91763 11.44444 -4.14815
3.5 1.33333 3.5 2.77778 11.11111 -0.29147
4 3.5 3.5 3.83333 14.83333 -0.68171
4.16667 2.77778 3.83333 3.11111 13.88889 -1.50000

Fragment 21-30
1.33333 4.33333 2.5 4.33333 12.5 13.24035 5.45833 -18.0694
4.33333 0 5.5 1 10.83333 -0.40600
2.5 5.5 3.125 5.5 16.625 -0.48801
4.33333 1 5.5 1 11.83333 -6.24035

Fragment 31-40
0 3.33333 4 1.66667 9 12.59011 8.44444 -10.4691
3.33333 2.66667 3.77778 3.44444 13.22222 -0.40697
4 3.77778 4 3.88889 15.66667 -0.66468
1.66667 3.44444 3.888889 1.77778 10.77778 -3.07402

size 1 2 3 4 5 6 7 8 9 10
W 0 1 4 10 20 35 56 84 120 165

Table 11. 4 × 4 Condensed Matrices, the Row Sums, the
Eigenvalues, the Trace, and the Determinant for the Three Segments
of DNA Obtained by Replacement of A at Positions 3, 5, and 6 by
C

4 × 4 matrix row sum eigenvalues trace det

Replacement A3 by C
0.5 3 2.75 3.5 9.75 12.97593 7 -31.8438
3 3 3.75 3.5 13.25 -0.39490
2.75 3.75 2.5 5.5 14.5 -1.53547
3.5 3.5 5.5 1 13.5 -4.04456

Replacement A5 by C
1.5 3 2.5 4.5 11.5 12.87524 7 -15.6250
3 2 4 2.5 11.5 -0.35129
2.5 4 2.5 5.5 14.5 -0.71897
4.5 2.5 5.5 1 13.5 -4.87524

Replacement A6 by C
1 3.5 2.25 5 11.75 12.87702 6 -20.8438
3.5 1.5 4.25 2 11.25 -0.38998
2.25 4.25 2.5 5.5 14.5 -0.71969
5 2 5.5 1 13.5 -5.76735
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replacement of adenine by cytosine. The eigenvalues, and
in particular the leading eigenvalue, apparently show minor
variations, while the trace and the determinant (which also
appear in the characteristic polynomial of the corresponding
eigenvalue problem) show apparently unpredictable changes,
suggesting that the coefficient of the characteristic polyno-
mial may be less suitable as descriptors for DNA sequences
by not showing simpler regularity in their variations.

8. CONCLUDING REMARKS

By constructing a DNA “profile” we succeeded in replac-
ing the primary sequence of DNA by a sequence of numerical
invariants. Comparison of two DNA sequences is now
transformed into a comparison of the corresponding se-
quences of mathematical descriptors of DNA which is a
straightforward mathematical exercise. Direct comparison of
sequences based on invariants can lead to partial ordering
in addition to the traditional table of similarity/dissimilarity
among sequences. Future applications of this approach and
possible modifications will demonstrate which of the various
methods outlined here for characterization of DNA may be
useful for specific problems. As has been the case with the
introduction of numerous topological indices in QSAR,
different structural invariants may play a dominant role in
different applications.

ACKNOWLEDGMENT

This is contribution number 294 from the Center for Water
and the Environment of the Natural Resources Research
Institute. Research reported in this paper was supported by
Grants F49620-98-1-0015 and F49620-01-1-0098 from the
U.S. Air Force.

REFERENCES AND NOTES

(1) Levenshtein, V. I. Binary codes capable of correcting deletions,
insertions, and reversals.Cybernet. Control Theor.1966, 10, 707-
710.

(2) Sankoff, D. Matching sequences under deletion-insertion constraints.
Proc. Natl. Acad. Sci. U.S.A.1972, 68, 4-6.

(3) Kruskal, J. B. An overview of sequence comparison. InTime wraps,
String Edits, and Macromolecules: The Theory and Practice of
Sequence Comparisons; Sankoff, D., Kruskal, J. B., Eds.; Addison-
Wesley: London, 1983; pp 1-40.

(4) Waterman, M. S. General methods of sequence comparison.Bull. Math.
Biol. 1984, 46, 473-500.

(5) Smith, T. F.; Waterman, M. S. Comparison of biosequences.AdV.
Appl. Math.1981, 2, 482-489.

(6) Smith, T. F.; Waterman, M. S. Identification of common molecular
subsequences.J. Mol. Biol. 1981, 147, 195-197.

(7) Pearson, W. R.; Lipman, D. J. Improved tools for biological sequence
comparison.Proc. Natl. Acad. Sci. U.S.A.1988, 85, 2444-2448.
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(9) Jerman-Blazˇič, B.; Fabič, I.; Randić, M. Application of string
comparison techniques in QSAR Studies. InQSAR in Drug Design
and Toxicology;Hadzi, D., Jerman-Blazˇič, B., Eds.; Elsevier Sci.
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