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We outline numerical characterization of DNA primary sequence based on calculation of the average distance
between pairs of nucleic acid bases. This leads to a representation of DNA by a condenéegrmmetrical

matrix, the elements of which give the average separation between pair of bases X, Y in DNAHA, Y

C, G, T). As an invariant of choice we consider the leading eigenvalue of the derivetiMatrix. Additional
structurally related invariants were obtained by constructing additional “higher orde# vhatrices derived

from the initial 4 x 4 matrix by raising its elements to higher powers. Suitably normalized leading eigenvalue
of these matrices offer a novel characterization of DNA primary sequences, referred to as “DNA profiles”.
The approach is illustrated on exon 1 of hungaglobin gene.

1. INTRODUCTION to find suitable invariants to characterize a given primary
An important task in analyzing available DNA data is to sequence of DNA. A way to arrive at structural invariants

estimate the degree of similarity between finite sets of strings fOF @ Seguence is to associate a matrix with the sequence.
of nucleic bases. The standard procedures consider differ-ONCe @ matrix has been constructed we can use a selection

ences between strings due to deletigmsertion, compres- of matrix invariants as descriptors, which, upon ordering,
sion—expansion, and substitution of the stringi elemeénts.  offer a numerical characterization of the sequence. Recently

These approaches have been applied to a variety of promemsconstruction of several matrices associated with DNA have

from the error correcting codes in which Levensthein has P€€n outlined>™¢ based on graphical representations of
introduced metrics for string compariséts comparison of DNA. Graphical representations of DNA have received some

DNA sequences, comparison of protein sequences, an ttention in the literaturé=2” They result in a geometrical

applications in quantitative structuractivity relationship structure that is embedded. enher In a two- or Fhree-
(QSAR)?° Such approaches, that have been hitherto widely dimensional space. A .twq-d|menh5|czcnal reprlefsentatlon hOf
used, are computer intensive. We have recently proposed®NA iS obtained by assigning to the four nucleic bases the

an alternative approach for comparison of sequences that iirections along the positive and negative x and y dxes.
based on characterization of DNA by ordered sets of Alternately, |f_0ne_aSS|_gns to the four nuclelc_ acids the four
invariants derived for DNA sequence, rather than by a direct tetrahedral direction in 3D spaleone obtains a three-

comparison of DNA sequences themselves. This is ana|ogou5dimen§ionalfrepresentation of DNA. From gr_aphical repre-
to use of graph invariants (topological indices) for charac- sentations of DNA one can construct a matrix representing

terization of molecules rather than use of information on their PNA by calculating the Euclidean (through space) and the
geometry and types of atoms involved. An important graph theoretical (through bonds) distances between all pairs

advantage of the characterization of structures (be it small Of Nucleic acid bases.
molecule or a macromolecule like DNA) by invariants, as ~ One can associate a matrix with DNA also without the
opposed to the use of strings, is the simplicity of the use of graphical representations of DNA. One way to obtain
comparison of numerical sequences based on invariants. Thé matrix not associated with graphical representation of DNA
price paid, however, is a loss of information on some aspectsis to consider directly the primary sequence and to assign to
of the structure that accompany any characterization basedgach nucleic acid base two numbers: one number giving
on invariants® The loss of information, however, can be the position of a base in the DNA sequence and the other
compensated in part by the use of a larger number of giving the position of a base in the subsequence of nucleic
descriptors (invariants), as has been well illustrated in the acid bases of the same kind. In Tables 1 and 2 we have
QSAR model based on mathematical descriptors for illustrated these indicator numbers for exon 1 of human
moleculesii-14 f-globin gene (92 bases). Using such labels we can represent
The central problem to consider, if one is to use set of the DNA sequence as a numerical sequence. For example, a

structural invariants instead of the structural codes, is how portion of the DNA sequence corresponding to adenine (A)
leads to the following numerical sequerie:
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Table 1. Exon-1 of Human Beta Globin Gehe rows and columns. Such matrices need not offer immediately
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 useful numerical insights into specifications of a particular
AT G GT G CACTCTGATCT DNA sequence. We are interested in numerical characteriza-

é6 é7 %8 é9 A20 G21 622 A23 GZ4A25A 26G 27T 280 2% 30 tion of DNA and it seems desirable to construct reduced
31 32 33 34 35 36 37 38 39 40 41 42 43 a4 45 Matrices which summarize information on DNA sequence

G CC GTTACTGT CT CT CT G as a whole, rather than using matrices based on extensive
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 information relating to each individual pair of bases. By
T GG GG CAAGGTG AAC considering separately pairs of nucleic bases one can

61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 ; ; ; TR
G T GG ATGAAGTTG GG T summarize pertinent information in a very condensed 4

76 77 78 79 80 81 82 83 84 85 86 87 83 89 9o matrix of the following form:
G G T GAGGCT CTC CTGTGG C

91 92
A G AA AC AG AT
CA cC CG CT
aThe nucleic bases are grouped in groups of five for better visibility. GA GC GG GT
TA TC TG TT

Table 2. Same DNA Sequence Shown in Table 1 with Sequential

Here the individual elements XY relate to the information
Labels That Count Each of the Nucleic Acid Types Separately

on the pair of bases X and Y. If the order of bases is not

1112 2 3 1 2 2 3 3 4 3 4 4 critical for the property considered, that is if XY is considered
'g‘ E Cé % E % % '?‘5 CS % T7 % Aé C7 T7 the same as YX, one obtains in this way a symmetric 4

C C T GAGGAGAAGTT CT matrix. Otherwise the 4 4 matrix would be nonsymmetri-
100 8 9 11 8 9 8 10 10 12 11 12 13 11 13 cal, as was the case with thexd4 matrices obtained when
c ¢cc 6T T ACTGCCCTG considering the frequency of a nucleic base X followed by
%2 (134 éS ée é7 Cl4 A9 A10 Gls GlngsGZOA 11A 12C 5 pase Y separated by distancé?d. _

21 14 22 23 13 15 16 14 15 24 17 18 25 26 19 The idea of a condensed ¥4 4 matrix can be further

G T GGATTAAGTTGGT extended by considering triplets XYZ of nucleic actl$n

27 28 20 29 16 30 31 16 17 18 21 32 33 34 19 gych a case one obtains a cubic “matrix”, the elements of
% (355 réeAaceccccT666cC which are indicated by a triplet of subscripts i, j, k. The
A G resulting “matrix” summarizes information on all 64 possible

triplets of combinations of three nucleic base sequefites,
o starting with AAA and ending with TTT. In this work we
Similar sequences of Ien_gth 1.9, 35,and 21 can be constructedyi|| use 4 x 4 reduced matrices shown above in which the
for the remaining nucleic acids C, G and T, i.e., CC, GG, matrix element XY represents the average distance between
and TT, having 17, 19, 35, and 21 rows and columns. We y 4y in a segment of DNA considered. We will illustrate
will briefly return to these symmetric square matrices later ine characterization of DNA by such a matrix on exon 1 of
(see section 7). _ _ _ _ humang-globin gene (Table 1). Hence, we will condense
Still another way to obtain a matrix associated with @ DNA * jnformation contained in the segment of DNA which has 92
primary sequence is to count the frequency of occurrencespases to a 4« 4 matrix from which subsequently we will

of pairs of bases XY at various separations. The frequency extract several structural invariants to be used as DNA
of X—Y bases, when summarized, leads to a reducedd  gescriptors.

matrices for DNA sequence, each of such matrices giving
?f?rmati;n on nucleic acid bases separated by different 3. AVERAGE X—Y BASE DISTANCE
istances! , . ) )

In this paper we will consider the distances between pairs _nvariants derived from the graph theoretical distance
of nucleic acid bases rather than the frequency of the variousMatrix have found considerable application in the quantitative
pairs. We will show how the average distances between pairsStructuré-activity relationship (QSAR) and the quantitative
of bases lead to a set of novel numerical invariants for the Structure-property relationship (QSPR), respectively’
characterization of DNA. One of the simple such invariants is the Wiener nuniber,

We should mention that matrices have been used for Wr which is given as the sum of the matrix elements of the
convenient book-keeping of matching, mismatches, and distance matrix qbove the main d"'ﬂ?gO‘*Pa't dn‘fer; from
deletions of a base or bases in a search for the best alignmentthe average matrix element of the distance matrix only by a

of two sequence®-30 However, in such studies a matrix is constant of proportionality. The distance matrix D(i, j) of a

| ; ith iff inal graph G was intrqduced in graph theory by Haré&rits (i,
always associated with two different sequences, not a sing e) element is defined by the length of the shortest path

DNA sequence. In addition, such matrices were not analyzed! . ) . .
for their properties relevant to the characterization of between vertices i and j. In linear structures, such as a string

structure, such as construction and selection of invariants.Of nucleic acid bases of DNA, the distance between two sites

Derivation of structural invariant for the complete charac-

is simply given by the difference of the corresponding
terization of DNA sequence is the hallmark of this paper. S€dU€Nce numbers. The Wiener number W continues to be

used in chemical graph theot¥For acyclic molecules of a
similar size (e.g. isomers) W is an indicator of the degree of
molecular branchiné?~*°> However, this interpretation has
A direct base-by-base transformation of a primary DNA limitations and better alternative characterization of branching
sequence to a matrix will result in a matrix having many not based on the Wiener number was considered $fnte.

2. REDUCED DNA MATRICES



CHARACTERIZATION OF DNA PRIMARY SEQUENCES J. Chem. Inf. Comput. Sci., Vol. 41, No. 3, 20863

Table 3. Submatrix That Is Collecting Information on All-AA Table 4. Submatrix That Is Collecting Information on All-AC

Separation Distances in the Primary DNA Sequence of Table 1 Separation Distances in the Primary DNA Sequence of Table 1
1 8 13 20 23 25 26 37 52 53 58 59 65 68 69 80 91 1 8 13 20 23 25 26 37 52 53 58 59 65 68 69 80 91
1 0 7 6 1 6 13 16 18 19 30 45 46 51 52 58 61 62 73 84
8 7 0 9 8 1 4 11 14 16 17 28 43 44 49 50 56 59 60 71 82
1312 5 0 10 9 2 3 10 13 15 16 27 42 43 48 49 55 58 59 70 81
20 19 12 7 O 14 13 6 1 6 9 11 12 23 38 39 44 45 51 54 55 66 77
23 22 1510 3 O 16 15 8 3 4 7 9 10 21 36 37 42 43 49 52 53 64 75
2524 17 12 5 2 0 1716 9 4 3 6 8 9 20 35 36 41 42 48 51 52 63 74
26 25 1813 6 3 1 O 29 28 21 16 9 6 4 3 8 23 24 29 30 36 39 40 51 62
37 36 29 24 17 14 12 11 O 32 31 2419 12 9 7 6 20 21 26 27 33 36 37 48 59
52 51 44 39 32 29 27 26 15 O 33 32 2520 13 10 8 7 4 19 20 25 26 32 35 36 47 58
53 52 45 40 33 30 28 27 16 1 O 38 37 30 25 18 15 13 12 1 14 15 20 21 27 30 31 42 53
58 57 50 45 38 35 33 3221 6 5 O 41 40 33 28 21 18 16 15 4 11 12 17 18 24 27 28 39 50
59 58 51 46 39 36 34 33 22 7 6 1 O 42 41 34 29 22 19 17 26 5 10 11 16 17 23 26 27 38 49
65 64 57 52 45 42 40 39 28 13 12 7 6 O 43 42 35 30 23 20 18 17 6 9 10 15 16 22 25 26 37 48
68 67 60 55 48 45 43 42 31 16 15 10 9 3 O 51 50 43 38 31 28 26 25 14 1 2 7 8 14 17 18 29 40
69 68 61 56 49 46 44 43 32 17 16 11 10 4 1 O 60 59 52 47 40 37 35 34 23 8 7 2 1 5 8 9 20 31
80 79 72 67 60 57 55 54 43 28 27 22 21 15 12 11 O 83 82 75 70 63 60 58 57 46 31 30 25 24 18 15 14 3 8
91 90 83 78 71 68 66 65 54 39 38 33 32 26 23 22 11 0O 84 83 76 71 64 61 59 58 47 32 31 26 25 19 16 15 4 7
85 84 77 72 65 62 60 59 48 33 32 27 26 20 17 16 5 6

. . .90 89
As several papers have pointed out the distance matrix

for characterization of molecules h me limitatieh®s ) )

or characte at(.) Ol molecuies nas some ta ' Table 5. Condensed 4 4 Matrix: the Elements of Which Show

becz_ius_e more dlsta_nt elgments are r_epresented by_ Iarg%e Average Separation betweer-X Nucleic Acid Bases (X, Y=

entries in such matrix, while the opposite seems desirable.a, c, G, Ty

This led to consideration of a matrix of reciprocal distances

AA AC AG AT 29.633218 30.941176 30.998319 29.708683

and similar modification8?-56 On the other hand in view cC CG CT 30.116343 32.348872 30.441103
of the wide use and application of distance matrix and GG GT 15.193469 30.394558
distance based invariants, it seems desirable to investigate L 28.961451
distances properties associated with strings of nucleic acid™A Ac% ACGG ACTT 30.281500 ;’8'288(2)88 g’ig%gﬁg g’g'gﬁgég
bases in DNA as these may lead to analogous distance-based GG GT ' 15.193469 30.394558
invariants to be used to characterize DNA sequences. TT 28.961451

To illustrate the approach in Table 2 we have collected
the distances between all pairs-A measured along the aThe top part corresponds to the DNA sequence of Table 1, and

.. the bottom part corresponds to the hypothetical DNA sequence in which
DNA chal_n in of exon 1 of Table 1. Becau_se base A OCCUrS ,denine atFt)he positioel 58 is replagg by cytosine. g
17 times in the DNA sequence, we obtained a symmetric
17 x 17 the distance matrix AA, of which we have only
shown the lower portion. From this ¢ 17 matrix we can
evaluate the average matrix element by summing all the
entries in the matrix and dividing it by %,7which is 8564/
289= 29.633218. Observe that we included in the count of
all distances between the-AA pairs also the zero AA
distances along the main diagonal. Hence, in making the
average we have %71n the denominator for the fraction
shown. For the same 1Y 17 matrix the Wiener number is
4287, which when doubled gives 8564, which appears in
the numerator of the fraction shown above.

The reason for including the zero distances (the paths of
length zero) becomes more apparent when one considers th
complete distance matrix for exon 1 (Table 1) which would

In Table 4 we illustrate the AC rectangular submatrix that
records the distance between adenine (A) and cytosine (C).
It has 17 columns and 19 rows corresponding to the number
of A and C, respectively. The difference between the
successive rows in the AC submatrix is constant for all the
rows and the columns till the position in the column when
the row label becomes bigger than the column label. Then
the sense of the difference is reversed and the relative
magnitudes of successive rows or columns are reversed. A
similar regularity can be found also for the difference
between the successive columns, except for the rows which
have a label that is larger than the first column and smaller
fhan the next column when instead of the difference we have
: \ : a constant sum. These regularities may help one to find
be of size 92x 92. The 17x 17 matrix AA of Table 3is el errors if the distance submatrices are not con-

_the part of the 92x 92 dlstaﬂce matrix rearranged so th.at structed by computer. In the case of the AC submatrix shown
its elements are partitioned into the rectangular submatrices

iated with individual pairs of XY b h below: " Table 4, the sum of all 1% 19 matrix entries is 9994,
assoclated with individual pairs of XY bases as shown below: ;- gives the average value of the matrix element of AC

submatrix 9994/(1% 19)= 30.941176. In Table 5 (top part)

AA AC AG AT 17 x17 17x19 17x35 17x21 we have collected all XY average elements (X=YA, C,

(C;ﬁ g‘é gg g_ %gx g égx ig égx gg égx ﬁ G, T) for the distance matrix of the exon 1 of the human
X X X X H H H

TA TC TG TT 21x 17 21x19 21x35 21x 21 p-globin gene. As a result we obtain a symmetricak 4

matrix, the construction of the first two elements of which
The dimensions of these rectangular matrices are given byhas been outlined above.
the frequency of the nucleic bases of each type. As mentioned The elements of the derived condensed matrix represents
before it is only along the diagonal that we have quadratic a considerable contraction of the information of the DNA
submatrices with zero diagonal entry, the size of which is sequence considered. So the following question can be
given similarly by the total number of the corresponding immediately raised: does such a drastically simplified matrix
bases. contain enough compositional information to be useful when
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Table 6. Selection of Matrix Invariants Derived from Condensed 4  Table 7. Eigenvalues, the Normalization Factors, and the

x 4 Matrix2 Normalized Leading Eigenvalues of the “Higher Order” Condensed
matrix invariant A/IC Matrices
the maximal row sum 123.281396  122.681965 . .. profile — after A/C
the minimal row sum 108.935218 108.970170 eigenvalue normalization original substitution
the average row sum 118.392476 118.465938 1 118.64 1 118.64 118.71
the leading eigenvalue 118.638256 118.707621 2 3577.67 1/2 894.42 895.22
other eigenvalues: —0.399856 —0.449911 3 10,875.22 1/6 3020.89 3023.57
—1.150524 —0.772788 4 3,320,808.00 1/24 5765.29 5768.33
—13.183404 —13.158502 5 101,705,087.43 1/120 7062.85 7061.40
trace (the sum of eigenvalues) 103.904481 104.32642 6 3,121,851,701.12 1/720 6022.09 6014.04
average matrix element 29.598119 29.61%548 7 96,005,201,290.02 1/5040 3779.49 3768.59
8 2,957,422,941,020 1/40320 1819.17 1810.29
@ The last column corresponds to the case of A/C substitution. 9 91,249,864,640,008 1/362880 692.96 687.88
10 2,819,911,366,087,310 1/3628800 214.15 211.%

_ ) ) 11 8.728054 16 1/(111P 54.78 54.03
comparing different DNA sequences. That drastically con- 12 2.705684 18 1/(121P 11.79 11.58
densed representation of complex systems can have usefull3 8.400690 18 1/(131p 2.17 212
information has been recently demonstrated by several 14 2.61235416 L4y 0.34 0.33
researcheP$58who were able to arrive at a useful summary 15 813632316 Loy 0.00 0.0

16 2.538064 1¢ 1/(16'P 0.01 0.01

for properties of structural isomers by considering average
properties of a large set of compounds. More relevant for 2 The last column corresponds to the case of A/C substitution.
our case are the characterizations of molecules using the so-
called molecular “profiles®®%3 Because a single invariant  elements of which are given as quotient of the Euclidean
may not suffice to characterize complex systems, design ofand graph theoretical distances for an embedded graph in
an additional set of invariants seems desirable. In particular 3D space) as an index of molecular folding. In another study
it is desirable to have invariants which are related structurally, Randig Vratko, and Novié’ related the leading eigenvalue
rather than just having a set afl hocderived invariants. of the line adjacency matrix of an embedded graph as a
Molecular profiles represent one such set of structurally measure of molecular flexibility. More recently, the leading
related invariants. They are constructed from a set of “higher eigenvalue of the path matffwas found to offer an even
order” matrices representing a molecule again by averagingbetter, or at least more discriminatory, characterization of
matrix elements. They can be viewed as components of amolecular branchiné?“°The leading eigenvalue of the D/DD
vector giving a “profile” of the sequence considered. The matrix (the elements of which are constructed as the quotient
structurally related matrices are derived using suitable of the corresponding elements of the distance matrix (D) and
algebraically manipulations of the matrix elements of the the detour matrix (DD} 73 was suggested as a measure
initial distance matrix, as will be outlined in the next section. of molecular cyclicity’*73In view of the apparent structural
significance of the leading eigenvalues of various matrices
4. INVARIANTS OF REDUCED MATRICES associated with chemical structures it seems worthwhile to
From the 4x 4 matrix of Table 4 we can select several epr(_)re the use of the 'ead"?g e!genvalues of conden;ed DNA
matrix invariants, including the following: the eigenvalues, matrices for the charac_terlzatlon of DNA'. In passing we
the average matrix element, the average row sum, theshould adq that other eigenvalues, even eigenvectors, have
maximal row sum, the minimal row sum, the determinant, begn c96n5|dered as a source for construction of topological
the trace (the sum of the diagonal elements), and if desired!"diCes’
the coefficients of the characteristic polynomial, etc. The
maximal and the minimal row sum represent, according to 5 CONSTRUC,T'ON OF ;I'HE LEADING EIGENVALUES
the theorem of Frobenius-Perrétthe upper and the lower PROFILE" OF THE DNA
bounds on the leading eigenvalue of a matrix. In Table 6 Besides the well-known standard product of two matrices
we listed several of the above-mentioned invariants for the A B in matrix algebra one can consider also the produd A
4 x 4 matrices of Table 5. Observe how close are the (also referred to as Kronicker’s product) defined by multiply-
magnitudes of the average row sum and the leading eigen-ing the element;aof matrix A and the element;tof matrix
value, which is a consequence of the fact that individual B.”” If A = B we obtain from matrix A matrix?A, the
matrix elements (except for the instance of CC element) are elements ofA are given by the squares of the elements of
of similar magnitude. Hence, when the individual matrix the original matrix, i.e.?a; = (g)? The leading eigenvalue
elements of the 4« 4 matrix do not differ much, the average of this matrix €1,) is an additional structural invariant that
row sum may offer a satisfactory estimate of the leading can be used for characterization of the primary sequence of
eigenvalue. DNA. The process can be continued and in additioR&o
In the following we will here consider only the leading one can construct a set of matricks by repeatedly
eigenvalue of the reduced matrix as the invariant used for multiplying 2A matrix by A, etc. In this way we obtain a
characterization of DNA. The leading eigenvalue of matrices matrices A?2A, A, “A, °A, ®A, ... which yield as invariants
associated with a molecular graph have found useful an ordered set of the leading eigenvaligs?iy, 311, A1,
interpretations. Lovasz and Pelikan pointed to the use of the®1y, 614, ....
leading eigenvalue of the adjacency matrix as a measure of Because matrix elements &, and other higher order
branching® Randic Kleiner, and DeAlb have interpreted  matrices, continue to increase in magnitude upon exponentia-
the leading eigenvalue of the so-called D/D matrix (the tion the corresponding leading eigenvalfiggalso increase
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Table 8. Elements of the Condensed Matrix as Components of Table 9. Four Segments of DNA of Table 1 Each of Length Ten
10—Dimer_lsional Vector for DNA Sequence_of _Table 1 a_nd the and the Corresponding Distance Matrices
:é/ggitgstg:alc&fgsuiﬁgce Obtained by Substitution of a Single 1 2 3 4 5 6 7 8 9 10
y&y AT G G T G C A C C
original DNA A/C substitution difference 1 8 7 9 10 3 4 6 2 5 rowsum
AA 29.6332 30.2815 —0.6483 é (7) g ? ? g é i g fls ‘31 gf
AC 30.9412 30.8063 +0.1349
7 6 1 0 2 3 4 3 1 5 2 27
AG 30.9983 31.5107 —0.5124
9 8 1 2 0 1 6 5 3 7 4 37
AT 29.7087 30.0714 —0.3627
0 9 2 3 1 0 7 6 4 8 5 45
cC 30.1163 29.8900 +0.2263
3 2 5 4 6 7 0 1 3 1 2 31
CG 32.3489 31.8714 +0.4774
4 3 4 3 5 6 1 0 2 2 1 27
CT 30.4411 30.1143 +0.3268
6 5 2 1 3 4 3 2 0 4 1 25
GG 15.1935 15.1935 0
2 1 6 5 7 8 1 2 4 0 3 37
GT 30.3946 30.3946 0 5 4 3 2 4 5 2 1 1 3 o0 o5
TT 28.9615 28.9615 0
11 12 13 14 15 16 17 18 19 20
aThe last column shows the difference between the two cases. T G A C T C C T G A
3 10 4 6 7 2 9 1 8 rowsum
) . ) 3 0 7 1 3 4 1 6 2 2 5 31
in magnitude (see the second column in Table 7). Toavoid 10 7 0 6 4 3 8 1 9 5 2 45
a divergent sequence of tH&; descriptors we need to 4 1 6 0 2 3 2 5 3 1 4 27
normalize the derived leading eigenvalues. Using (%/a) 2 g g 2 é g 3 g % i g?
the normalization factor we obtain a converging sequence , 1 g 2 4 5 0 7 1 3 6 37
of normalized leading eigenvalues of Table 7, which 9 6 1 5 3 2 7 0 8 4 1 37
represents a sequence of invariants that offers a characteriza-1 2 9 3 5 6 1 8 0 4 7 45
tion of DNA. We will refer to such a constructed sequence 2 5 1 1 2 3 4 4 0 3 25
! X . “ o 8 5 2 4 2 1 6 1 7 3 0 31
of descriptors/invariants as “DNA profile.
21 22 23 24 25 26 27 28 29 30
G G A G A A G T C T
6. A TEST OF THE SENSITIVITY OF DNA PROFILES 3 5 6 9 1 2 4 7 8 10 rowsum
. . . 3 0 2 3 6 2 1 1 4 5 7 31
One of the most important questions that characterizesa 5, o 1 4 4 3 1 2 3 5 25
system by an invariant, including molecular profiles,isthe 6 3 1 0 3 5 4 2 1 2 4 25
sensitivity of the derived invariants to minor changesinthe 9 6 4 3 0 8 7 5 2 1 1 37
DNA sequence. To test the sensitivity of the “DNA profile” 1 2 4 5 8 0 1 3 6 7 9 45
we have perturbed the original DNA sequence of Table 1 2 b3 4 10 2 5 68 37
pertury 9 A sequenc el 4 1 1 2 5 3 2 0 3 4 6 27
by replacing a single nucleic base in the positon 58, which 7 4 2 1 2 6 5 3 0 1 3 27
was A, by C. For the modified DNA sequence we constructed 8 5 3 2 1 7 5 4 1 0 2 31
the reduced 4< 4 matrix which is shown in Table 5 (the 10 7 S5 4 1 9 8 6 3 2 0 45
lower part). The submatrices involving A and C, i.e., the 31 32 33 34 35 36 37 38 39 40
submatrices AA, AC, AG, AT, CC, CG, CT, and the G ¢ ¢c 6 T T A C T G
corresponding symmetry equivalent submatrices CA, GA, r2 s 8 1 410 5 6 9 rowsum
q hich Il th b . N the fi 7 0 5 4 1 6 3 3 2 1 2 27
TA, GC, and TC, which are all the submatrices inthefirst , 5 o 1 6 1 2 8 3 4 7 37
two columns and the first two rows, will be affectedbythe 3 4 1 0o 5 2 1 7 2 3 &6 31
replacement of a single A by C. As we see by a comparison 8 1 6 5 0 7 4 2 3 2 1 31
of the two 4 x 4 matrices of Table 5 the individual matrix le g % i Z (3) g g i‘ 52" g 33
elements change S|gn!f|cantly, even if not dramatically. The 17 3 8 7 2 9 6 0 5 4 1 45
parts of the 4x 4 matrices corresponding to elementsGG, 5 2 3 2 3 4 1 5 0 1 4 25
GT, TG, and TT have not changed (as expected). Asa 6 1 4 3 2 5 2 4 1 0 3 25
2 7 6 1 8 5 1 4 3 0 37

consequence of introduced changes in matrix elements based °
on the “higher order” matrices the invariants listed in Table )
6 have changed also. Similarly the DNA profiles have as (AA, AC, AG, AT, CC, CG, CT, GG, GT, TT) we obtain
changed, as can be seen by comparing the last two columng Vector in a 10-dimensional vector space. In Table 8 we
of Table 7. Because the small difference between the leadinghave listed the component of the two 10-component vectors
eigenvalues are magnified by recursive multiplication the corresponding to the two matrices of Table 5. Again we see
difference in magnitudes between the corresponding entriesthat the single substitution of A by C induces, visible even
of two profiles becomes pronounced for the intermediate if not large, change in the magnitudes of the components.
section of the profiles corresponding to larger “amplitudes” This points to sufficient sensitivity of the # 4 considered

of the profiles. If the two profiles are viewed as vectors in Matrices of DNA to minor changes in the nucleic bases
a 16-dimensional space, the Euclidean distance between th&€0mposition.

two profiles is 17.69 even though the difference in the leading

eigenvalues was only 0.07. 7. NONCOMPACT MATRIX REPRESENTATION OF
An alternative characterization of DNA is given directly DNA
by the elements of the 4 4 matrix, without calculating the There is no doubt that by condensing a 9292 matrix

leading eigenvalues. By canonical ordering (here to be takenassociated with the primary sequence of DNA of exon-1 of
to be alphabetical order) from the 10 distant matrix elements human beta globin gene to a>4 4 matrix relating to the
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Table 10. 4 x 4 Condensed Matrices, the Row Sums, the Eigenvalues, the Trace, and the Determinant for the Four Segments of DNA of
Table 8

4 x4 matrix row sum eigenvalues trace det
Fragment +10
35 45 35 35 15 13.54495 7.66667 —19.3796
4.5 1.33333 4.33333 5.16667 15.33333 —0.30422
35 4.33333 1.33333 1.83333 11 —1.03647
35 5.16667 1.83333 15 12 —4.54495
Fragment 1+20
35 35 4 4.16667 15.16667 13.91763 11.44444 —4.14815
35 1.33333 35 277778 11.11111 —0.29147
4 35 35 3.83333 14.83333 —0.68171
4.16667 2.77778 3.83333 3.11111 13.88889 —1.50000
Fragment 2+30
1.33333 4.33333 25 4.33333 12.5 13.24035 5.45833 —18.0694
4.33333 0 5.5 1 10.83333 —0.40600
25 55 3.125 55 16.625 —0.48801
4.33333 1 5.5 1 11.83333 —6.24035
Fragment 3+40
0 3.33333 4 1.66667 9 12.59011 8.44444 —10.4691
3.33333 2.66667 3.77778 3.44444 13.22222 —0.40697
4 3.77778 4 3.88889 15.66667 —0.66468
1.66667 3.44444 3.888889 1.77778 10.77778 —3.07402

. . . . . Table 11. 4 x 4 Condensed Matrices, the Row Sums, the
average distance information for various base pairs we areEigenvalues, the Trace, and the Determinant for the Three Segments

bound to lose a considerable amount of detailed information of pnA Obtained by Replacement of A at Positions 3, 5, and 6 by
on DNA. Is there some less drastic option for characterization ¢

of DNA? 4 x 4 matrix row sum eigenvalues trace det
To consider this question we will examine severalx.0 Replacement Aby C
10 submatrices of the initial 9% 92 distance matrix. In 05 3 275 35 975 1297593 7 —31.8438
Table 9 we show four such submatrices corresponding to 3 3 375 35 1325 —0.39490
_ _ 275 375 25 55 145 —153547
the DNA subsequences-10, 11-20, 21-30, and 31+40 35 35 55 1 135 101456

of the sequence shown in Table 1. We will pretend that these
four cases simulate four DNA sequences in general, Fhough . 3 26 46 115 1987524 7 —15.6250
in fact they represent fragments of a single DNA primary 3 2 4 25 115 —035129
sequence and illustrate properties of local DNA invariants. 25 4 25 55 145 —0.71897
2

First to observe in Table 9 is that although the four 45 25 55 1 135 -—4.87524
matrices appear different they in fact represent the same Replacement Aby C
matrix (shown in Table 10) in which the rows and columns ig i%fs’ 3 ﬁg _Oléggggz 6 —20.8438
have been permuted. Such matrices are related by asimilarity, o5 425 25 55 145 —071969
transformation St M S and necessarily have identical 5 2 55 1 135 —5.76735
eigenvalues. Thus the leading eigenvalue is here of no
particular interest. Neither are the row sums of interest since
again all four matrices have the same individual row sums,
listed only in a permuted order. Consequently, the Wiener
index of the four matrices is the sam#& & 165). In fact W
depends only on the size of such matrices, all matrices o
the same size having the same W given by the table:

Replacement Aby C

entries from case to case (or from a fragment to a fragment),
thus they may yield useful sequence (or fragment) invariants.

In Table 11 we have constructed the reduced 44
fmatrices for the four fragment sequences of Table 9. As is

to be expected the reduced matrices, the elements of which
represent normalized average matrix elements, show varia-
tions between different sequence fragments. The leading
3 4 5 6 7 8 9 10 eigenvalues of such matrices (or ordered sequence AA, AC,
4 10 20 35 56 84 120 165 AG, AT, CC, CG, CT, GG, GT, TT of the average elements)
constitute local sequence invariants. As we see from Table
The successive increments are given by twice the binomial 11 the eigenvalues for the four fragments show considerable
coefficient 1, 3, 6, 10, 15, 28, .... variation in magnitudes.

Hence, the complete distance matrix for a string of DNA  Finally, let us illustrate on one of 18 10 matrices how
basis is not suitable for extraction of sequence invariants. sensitive are matrix invariants on a replacement of adenine
One way out of this dilemma is to consider the so-called (A) by cytosine (C). We selected the third matrix of Table
D/D matrices mentioned earlier, the elements of which are 9 where the DNA fragment has only one cytosine base (at
given as quotients of two distinctive measures imposed on position 9) and three adenine bases (at positions 3, 5, and
a sequence. Another possibility is to focus attention to 6). In Table 12 we show the corresponding«44 matrices,
diagonal submatrices AA, CC, GG, and TT, rather than the row sums, the eigenvalues, the trace, and the determi-
considering the whole matrix. As we can see from Table 9 nants. As we see the selected invariants of thex 4
these diagonal submatrices vary in size and magnitudes ofcondensed matrices are quite sensitive on the location of the

2
1



CHARACTERIZATION OF DNA PRIMARY SEQUENCES J. Chem. Inf. Comput. Sci., Vol. 41, No. 3, 20867

replacement of adenine by cytosine. The eigenvalues, and  QSPR;Devillers, J., Balaban, A. T., Eds.; Gordon and Breach Sci.

. . . . . Publ.: Amsterdam, 1999; pp 257.
in particular the leading eigenvalue, apparently ShOw minor 3, pocai 's . information theoretic indices of neighborhood complexity

variations, while the trace and the determinant (which also and their applications. Ifiopological Indices and Related Descriptors

appear in the characteristic polynomial of the corresponding IE? QSﬁRSa_anJD QbSIPF!ADeVIIIerds, 1., f;ggban, A. T§ Eds.; Gordon and
: ; reach Sci. Publ.: Amsterdam, ; pp 56G33.

elgenval_ue problem) ShOW gpparently unpredlctabl_e changes(14) Randi¢ M.; Novi€, M.; Vratko, M. Molecular Descriptors, New and

suggesting that the coefficient of the characteristic polyno- Old, Lecture Notes in Chemistrgubmitted for publication.

mial may be less suitable as descriptors for DNA sequences(15) RandicM.; Nandy, A.; Basak, S. C. On the numerical characterization

; ; TR ; P of DNA primary sequences. Math. ChemSubmitted for publication.
by not showing simpler regularity in their variations. (16) Randic M. Vratko, M. Nandy, A.: Basak, . C. On 3-D graphical

representation of DNA primary sequences and their numerical

8. CONCLUDING REMARKS characterizationJ. Chem. Inf. Comput. Sc200Q 40, 1235-1244.
(17) Randi¢ M. Condensed representation of DNA primary sequentes.
By constructing a DNA “profile” we succeeded in replac- Chem. Inf. Comput. Sc200Q 40, 50-56.

. . . (18) Randi¢c M. On characterization of DNA primary sequences by
ing the primary sequence of DNA by a sequence of numerical ™ ™ condensed matrixchem. Phys. Let200Q 317, 29-34

invariants. Comparison of two DNA sequences is now (19) RandicM.; Vratko, M. On the similarity of DNA primary sequences.

ransform in mpoarison of th T ndin _ J. Chem. Inf. Comput. S@OOQ 40, 599—6(_)6. )
transformed into a CO. pariso .0 the correspo d g. s€ (20) Nandy, A. A new graphical representation and analysis of DNA
quences of mathematical descriptors of DNA which is a sequence structure: |. Methodology and application to globin genes.

straightforward mathematical exercise. Direct comparison of Current Sci.1994 66, 309-313.

sequences based on invariants can lead to partial ordering?1) Nandy, A. Graphical analysis of DNA sequence structure: III.
Indications of evolutionary distinctions and characteristics of introns

in addition to the traditional table of similarity/dissimilarity and exonsCurrent Sci.1996 70, 661—668.
among sequences. Future applications of this approach and22) Nandy, A. Two-dimensional graphical representation of DNA se-

; At ; ; ; quences and intron-exon discrimination in intron-rich sequences.
possible modifications will demonstrate which of the various Compttt, Appl. Biosci, (CABIOSI96 12, 55-62.

methods OUt"n_e_d here for characterization of DNA may be (23) Leong, P. M.: Morgenthaler, S. Random walk and gap plots of DNA
useful for specific problems. As has been the case with the  sequencesComput. Appl. Biosci. (CABIOS095 12, 503-511.

introduction of numerous topological indices in QSAR, (24) Hamori, E. Graphical representation of long DNA sequences by
different structural invariants mav bl . . methods of H curves, current results and future aspBi$echniques
y play a dominant role in 1989 7, 710-720.
different applications. (25) Hamori, E. Visualization of biological information encoded in DNA.
In Frontiers of Computing Scienc®ickover, C., Tewskbury, S. K.,
Eds.; J. Wiley and Sons: New York 1994; Vol. 3: Scientific

ACKNOWLEDGMENT Visualization pp 90-121.
L o (26) Roy, A.; Raychaudhary, C.; Nandy, A. Novel techniques of graphical
This is contribution number 294 from the Center for Water representation and analysis of DNA - - A reviev.Biosci.199§ 23,

and the Environment of the Natural Resources Research _ 5571

- : - 27) Randi¢M.; Guo, X.; Basak, S. C. Characterization of DNA based on
Institute. Research reported in this paper was Supported by( occurrence of triplets of nucleic basdsChem. Inf. Comput. SE@001,

Grants F49620-98-1-0015 and F49620-01-1-0098 from the 41, 619-626.
U.S. Air Force. (28) Tinoco, 1., Jr.; Uhlenbeck, O, C.; Levine, M. D. Estimation of
secondary structure in ribonucleic acitigture1971, 230, 362—-367.
(29) Max, E. E.; Maizel, J. V., Jr.; Leder, P. The nucleotide sequence of a
REFERENCES AND NOTES 5.5- kilobase DNA segment containing the mowsenmunoglobulin
J and C region gened. Biol. Chem.1981, 256, 5116-5120.
(1) Levenshtein, V. |. Binary codes capable of correcting deletions, (30) Goad, W. B.; Kanehisa, M. |. Pattern recognition in nucleic acid

insertions, and reversal€ybernet. Control Theorl966 10, 707— sequences. |. A general method for finding local homologies and
710. symmetriesNuclei Acids Res1982 10, 247—263.

(2) Sankoff, D. Matching sequences under deletion-insertion constraints. (31) Trinajstic N. Chemical Graph TheoryCRC Press: Boca Raton, FL,
Proc. Natl. Acad. Sci. U.S.A972 68, 4—6. 1992 ‘ ‘ ‘

(3) Kruskal, J. B. An overview of sequence comparisoriTime wraps, (32) Buckley, F.; Harary, FDistance in GraphsAddison-Wesley: Read-
String Edits, and Macromolecules: The Theory and Practice of ing, MA, 1990. _ _
Sequence ComparisgrSankoff, D., Kruskal, J. B., Eds.; Addison-  (33) Randi¢ M.; Pompe, M. The variable molecular descriptors based on
Wesley: London, 1983; pp-140. distance related matrice3. Chem. Inf. Comput. S@001, 41, 575~

(4) Waterman, M. S. General methods of sequence compaBistinMath. 581. _ _
Biol. 1984 46, 473-500. (34) Rand|c M.; Balaban, A. T._; qual_<, S. C. On structural interpretation

(5) Smith, T. F.; Waterman, M. S. Comparison of biosequenaés. ﬂdgsgtgrl%eoaelated topological indicds Chem. Inf. Comput. S@001,

Appl. Math.1981, 2, 482-489.

(6) Smith, T. F.; Waterman, M. S. Identification of common molecular
subsequenced. Mol. Biol. 1981, 147, 195-197.

(7) Pearson, W. R.; Lipman, D. J. Improved tools for biological sequence

(35) Mihalic, Z.; Veljan, D.; Nikolic, S.; Plav&, D.; Trinajstic N. The
distance matrix in chemistryl. Math. Chem1992 11, 223-258.

(36) Ivanciuc, O.; lvanciuc, T. matrices and structural descriptors computed
from molecular graph distances. Topological Indices and Related

comparisog]?roc. Naﬂ; Acad. S‘E‘~ U.S.A.988 .85’ 2444-2448. Descriptors in QSAR and QSPRgvillers J., Balaban, A. T., Eds.;
(8) Jerman-BI&Z, B.; Fabig I.; Randic M. Comparison of sequences as Gordon and Breach Sci. Publ.: Amsterdam, 1999; pp-221.
a method for evaluation of the molecular similarily Comput. Chem. (37) Mihalig, Z.; Nikoli¢, S.; Trinajstic N. Comparative study of molecular
1986 7, 17§j188- . . L . descriptors derived from the distance matdx.Chem. Inf. Comput.
(9) Jerman-BlaZ, B.; Fabic I.; Randic M. Application of string Sci. 1999 32, 28-37.
comparison techniques in QSAR Studies.Q8AR in Drug Design (38) Ludé, B.; Lukovits, |.; Nikolic, S.; Trinajstic N. On distance indices
and Toxicology;Hadzi, D., Jerman-Blag, B., Eds.; Elsevier Sci. in QSPR modeling.J. Chem. Inf. Comput. SciSubmitted for
Publ.: Amsterdam, The Netherlands, 1987; pp-52. publication.
(10) It is generally believed that finite list of simple invariants cannot (39) Wiener, H. Structural determination of paraffin boiling poidtsAm.
uniquely represent graph or a molecular structure. In the words _of Chem. Soc1947 69, 17—20.
Frank Harary: "No decent complete set of invariants for a graph is (40) Hosoya, H. Topological index. A newly proposed quantity character-
known” (see ref 41 p 11). izing the topological nature of structural isomers of saturated
(11) Randi¢cM. Topological Indices. IThe Encyclopedia of Computational hydrocarbonsBull. Chem. Soc. Jpri971, 44, 2332.
Chemistry;Schleyer, P. v. R., Allinger, N. L., Clark, T., Gasteiger,  (41) Harary, F.Graph Theory Addison-Wesley: Reading, MA, 1969.
J., Kollman, P. A., Schaefer, H. F., lll, Schreiner, P. R., Eds.; John (42) MATCH (communications in mathematical and computer chemistry);
Wiley & Sons: Chichester, 1998; pp 3018032. Gutman, 1., Klavzar, S., Mohar, B., guest Eds.; Published by A. Kerber,
(12) Balaban, A. T.; Ilvanciuc, O. Historical developments of topological Department of Mathematics, University of Bayreuth: Bayreuth,

indices. InTopological Indices and Related Descriptors in QSAR and Germany.



568 J. Chem. Inf. Comput. Sci., Vol. 41, No. 3, 2001

(43) Bonchev, D.; TrinajsticN. On topological characterization of mo-
lecular branchingint. J. Quantum Chem: Quantum Chem. Symp.
1978 12, 293-303.

(44) Boncheyv, D.; TrinajstidN.; Information theory, Distance matrix, and
molecular branching). Chem. Physl1977, 67, 4517-4533.

(45) Bonchev, D. Topological order in molecules 1. Molecular branching
revisited.J. Mol. Struct. (THEOCHEM995 336, 137—156.

(46) Bertz, S. H. Branching in graphs and moleculRiscrete Appl. Math.
1988 19, 65-83.

(47) Ivanciuc, O.; lvanciuc, Y.; Carbol-Bass, D.; Balaban, A. T. Investiga-
tion of Alkane branching with topological indiceBegasusSubmitted
for publication.

(48) Randig¢ M. On structural ordering and branching of acyclic saturated
hydrocarbonsJ. Math. Chem1998 24, 345-358.

(49) Randi¢M.; Guo, X.; Bobst, S. Use of path matrices for characterization
of molecular structure®IMACS Ser. Discrete Math. Theor. Comput.
Sci.200Q 51, 305-322.

(50) Randi¢ M. Linear combinations of path numbers as molecular
descriptorsNew J. Chem1997, 21, 945-951.

(51) Balaban, A. T.; Mills, D.; lvanciuc, O.; Basak, S. C. Reverse Wiener
Indices.Croat. Chem. Act200Q 73, 923-941.

(52) Balaban, A. T.; at al. The complementary distance matrix, a new
molecular graph metric. Work in progress.

(53) Plavg, D.; Nikoli¢, S.; Trinajsti¢ N.; Mihali¢, Z. On the Harary index
for the characterization of chemical grapisMath. Chem1993 12,
235-250.

(54) Ivanciuc, O.; Balaban, T.-S.; Balaban, A. T. Design of topological
indices. Part 4. Reciprocal distance matrix, related local vertex
invariants and topological indiced. Math. Chem1993 12, 309—
318.

(55) Diudea, M. V. Indices of reciprocal properties of Harary indicks.
Chem. Inf. Comput. Scl997, 37, 292-299.

(56) Randi¢ M, Pompe M. Variable Molecular Descriptors; Poster

RANDIC AND BASAK

(60) Randi¢ M.; Razinger, M. On characterization of molecular shages.
Chem. Inf. Comput. Scl995 35, 594-606.

(61) Randi¢M.; Krilov, G. On characterization of molecular surfack.
J. Quantum Chenil997 65, 1065-1076.

(62) Randi¢M.; Krilov, G. Characterization of 3-D sequences of proteins.
Chem. Phys. Lettl997 721, 115-119.

(63) Randi¢ M.; Krilov, G. On characterization of the folding of proteins.
Int. J. Quantum Chenil999 75, 1017-1026.

(64) Gantmacher, Flheory of matricesChelsea Publ: New York, 1959;
Vol. Il, Chapter 13.

(65) Lovasz, L.; Pelikan, J. I. On the eigenvalues of tré&giod. Math.
Hung.1973 3, 175-182.

(66) Randi¢M.; Kleiner, A. F.; DeAlba, L. M. Distance/distance matrices.
J. Chem. Inf. Comput. Scl994 34, 277—286.

(67) Randi¢ M.; Vratko, M.; Novit, M. Eigenvalues as molecular
descriptors In QSAR/QSPR by Molecular DescriptpiBiudea, M.
V., Ed.; Nova Publ.: In press.

(68) Randi¢ M.; Plavs¢, D.; Razinger, M. Double invariantddATCH
1997, 35, 243-259.

(69) Amic, D.; Trinajstic N. On the detour matribxCroat. Chem. Actd995
68, 53-62.

(70) Lukovits, I. The detour indexCroat. Chem. Actdl996 69, 873—
882.

(71) Lukovits, |.; Razinger, M. On calculation of the detour ind&xChem.
Inf. Comput. Scil997 37, 283-286.

(72) Trinajstic N.; Nikoli¢, S.; Lug¢, B.; Amic, D.; Mihali¢, Z. The detour
matrix in chemistry.J. Chem. Inf. Comput. Sct997, 37, 631-638.

(73) Randi¢ M. DeAlba, L. M.; Harris, F. E. Graphs with identical detour
matrix. Croat. Chem. Actd 998 71, 53—68.

(74) Randi¢ M. On characterization of Cyclic structures. Chem. Inf.
Comput. Scil997 37,1063-1071.

(75) Pisanski, T. Plais, D.; Randi¢c M. On numerical characterization of
cyclicity. J. Chem. Inf. Comput. S200Q 40, 520-523.

presented at the 2nd Indo-U.S. Workshop on Mathematical Chemistry, (76) Balaban, A. T.; Ciubotariu, D.; Medeleanu, M. Topological indices

Duluth, MN, May 29-June 3, 2000.

(57) Dobrynin, A. A.; Gutman, |. The average Wiener index of trees and
chemical treesJ. Chem. Inf. Comput. Sc1999 39, 679-683.

(58) Bytautas, L.; Klein, D. J. Mean Wiener numbers and other mean
extensions for alkane treek.Chem. Inf. Comput. S@00Q 40, 471—
481.

(59) Randi¢M. Molecular profiles - - Novel geometry-dependent molecular
descriptorsNew J. Chem1995 19, 781-791.

and real number vertex invariants based on graph eigenvalues or
eigenvectorsJ. Chem. Inf. Comput. Sc1991], 31, 517-523.

(77) This operation is available on MATLAB as & (power (a, b):
Element- by-element power operation); Hanselman, D., Littlefield, B.,
Eds.; Mastering MATLAB 5, Prentice Hall: Upper Saddle River, NJ,
1998.

Cl10000981



