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A clear difference in the enthalpy changes derived from
spectroscopic and calorimetric measurements has recently
been shown. The exact interpretation of this deviation varied
from study to study, but it was generally attributed to the
non-two-state transition and heat capacity change.
Although the temperature-dependent thermodynamics of
the duplex formation was often implied, systemic and
extensive studies have been lacking in universally assigning
the appropriate thermodynamic parameter sets. In the
present study, the 24 DNA/DNA and 41 RNA/DNA
oligonucleotide duplexes, designed to avoid the formation of
hairpin or slipped duplex structures and to limit the base pair
length less than 12 bp, were selected to evaluate the heat
capacity changes and temperature-dependent thermody-
namic properties of duplex formation. Direct comparison
reveals that the temperature-independent thermodynamic

parameters could provide a reasonable approximation only
when the temperature of interest has a small deviation from
the mean melting temperature over the experimental range.
The heat capacity changes depend on the base composition
and sequences and are generally limited in the range of )160
to � )40 calÆmol)1ÆK)1 per base pair. In contrast to the
enthalpy and entropy changes, the free energy change and
melting temperature are relatively insensitive to the heat
capacity change. Finally, the 16 NN-model free energy
parameters and one helix initiation at physiological tem-
perature were extracted from the temperature-dependent
thermodynamic data of the 41 RNA/DNA hybrids.

Keywords: heat capacity change; temperature-dependent
thermodynamics; enthalpy-entropy compensation; the
NN-model parameters.

With the dramatic progress in the human genome project,
many gene sequences are well known but their structure and
function are not yet clearly understood, and therefore,
thermodynamic optimization strategy plays more and more
important role in understanding and predicting the
sequence-dependent higher-ordered structures of nucleic
acids [1–4]. Knowledge of the thermodynamics of nucleic
acids will also be very useful for designing appropriate
screening or scanning experiments for identifying the genetic

markers for diseases [5], sequencing single nucleotide
polymorphisms on a genome-wide scale [6], calculating
hybridization equilibria for purposes of designing the PCR
and rolling-cycle amplification [7,8], selecting optimal con-
ditions for hybridization experiments, and determining the
minimum length of a probe required for the hybridization
and cloning experiments [9,10]. Moreover, the development
of DNA chips for rapidly screening and sequencing
unknown DNAs mainly relies on the ability to predict the
thermodynamic stability of the complexes formed by the
oligonucleotide probes [11,12].

Spectroscopic and calorimetric measurements are two
widely applied methods to determine the thermodynamic
parameters of nucleic acids [13–15]. TheUVmeasurement is
highly sensitive and only small sample units are required for
a full set of measurements on a nucleotide sequence; as a
result, this method has been implemented in many different
ways and applied as a standard way to construct the
thermodynamic database of oligonucleotide sequences [16–
25]. The calorimetric measurement offers the directly
determined thermodynamic parameters of nucleotide
sequences, but this approach requires a substantially larger
sample size for a full set of measurements on a nucleotide
sequence. When the van’t Hoff enthalpy derived from the
UV measurements was directly compared with the calori-
metric enthalpy derived from the calorimetry measure-
ments, it was often found that the two quantities disagreed
with each other and this difference in the two enthalpies
sometimes approached 100% [26–35]. This appears to be a
general problem that has been recently addressed by several
labs, all with slightly different emphases and different
conclusions [26–31,36,37]. The possible interpretation is that
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the helix-to-coil melting is a non-two-state transition
[27,30,32] and the difference in hydration between the
duplex-stranded groups and single-stranded groups results
in a heat capacity increase [26–29,34,37–42]. It should be
noted that for short oligonucleotide sequences, the duplex
formation behaves in a two-state transition [17,43], while for
longer oligonucleotide sequences, the duplex formation
often behaves as a non-two-state transition due to the self-
assembled population of single strands [27,30]. Although
the change in heat capacity was generally regarded as a
dominant factor for the difference between the van’t Hoff
enthalpy and the calorimetric enthalpy [28,29,36–38], the
effect of heat capacity change on the thermodynamic
properties of duplex formation, except for a few studies
[39–42], has been lacking. Therefore, systemic and extensive
investigations are still required to assign universally appro-
priate parameter sets of the temperature-dependent ther-
modynamics for the DNA/DNA and RNA/DNA
oligonucleotide duplexes.

In the present study, we determined the temperature-
independent and temperature-dependent thermodynamic
parameters of 24 DNA/DNA and 41 RNA/DNA oligo-
nucleotide duplexes. The heat capacity changes were
derived by two methods: a linear regression of enthalpy
with respect to the melting temperature (DCp,H ¼ dDH/
dTm) and a linear regression of entropy with respect to
the logarithmic scale of the melting temperature
(DCp,S ¼ dDS/dlnTm). The thermodynamic properties of
the duplex formation determined by DCP ¼ 0 and
DCP 6¼ 0 were extensively discussed and compared. The
compensation of the temperature-dependent enthalpy and
entropy was also taken into account. Finally, the 16 NN-
model free energy parameters and one helix initiation
at physiological temperature were extracted from the
temperature-dependent thermodynamic data of the
41 RNA/DNA hybrids. These observations provide a
thorough insight into the origin of the duplex association/
dissociation transition.

M A T E R I A L S A N D M E T H O D S

Material preparations

DNA and RNA oligonucleotides were synthesized on a
solid support using the standard phosphoramidite method
with an Applied Biosystems Model 391 synthesizer and
purified by RP-HPLC with Wakosil-II 5C18RS cartridges
after de-blocking operations, then the oligonucleotides
were aliquoted for the UV melting experiments. The final
purity of these oligonucleotides was greater than 95%. All
experiments were carried out in a buffer solution contain-
ing 1 M NaCl/10 mM Na2HPO4/1 mM Na2EDTA
(pH 7.0). The single strand concentrations of the oligonu-
cleotides were determined by measuring the absorbance
(260 nm) at a high temperature. Two complementary
single strands were mixed in an equimolar ratio to form a
duplex.

UV melting measurements

UV thermal scans with single and duplex strands were
performed on Hitachi U-3200 and U-3210 spectrophoto-

meters equipped with a Hitachi SPR-7 and SPR-10
thermoprogrammer and temperature probes. All melting
curves of the duplex denaturationwere collected at a 260-nm
wavelength as a function of temperature over the range from
0 to 95 �C. Prior to the melting experiments, the samples
were first heated to 95 �C for 20 min and then slowly
annealed to the starting temperature of each heating-cooling
cycle. The water condensation on the cuvette exterior in the
low temperature region can be avoided by flushing with a
constant streamof dry nitrogen. The heating rateswere fixed
at 0.5 or 1.0 �CÆmin)1 based on the cuvette length. For each
oligonucleotide duplex, at least seven individual scans were
performed to determine the thermodynamic parameters.

Temperature-independent thermodynamic analysis

To provide the maximum likelihood of a two-state pattern
for the duplex association/dissociation transition, all the
oligonucleotide sequences were designed to avoid the
formation of hairpin or slipped duplex structures and to
limit the base pair length less than 12 bp. For any of the
non-self-complementary duplex formations, the thermody-
namic parameters can be determined by two conventional
van’t Hoff analysis methods. One is to plot the reciprocal of
the melting temperature (in Kelvin), T � 1

m , vs. ln(CT/4) using
the van’t Hoff equation [19,24,25,39–42]:

T�1
m ¼ R

DH
ln
CT

4
þ DS

DH
ð1Þ

where DH and DS are the enthalpy and entropy changes,
respectively. Tm is melting temperature. CT is the total
species concentration and R is the gas constant, 1.987
calÆK)1mol)1. Another method is to fit the shape of the
melting curves by using nonlinear least-squares program. In
all cases, the absorbance as a function of temperature in the
course of duplex melting can be given by [22,39,44–47]:

AðTÞ ¼ ð1� aÞ � AhelixðTÞ þ a � AcoilðTÞ ð2Þ

where A(T) is the absorbance of a solution at the
temperature of interest. Ahelix(T) and Acoil(T) are defined
as the sloped linear baselines of the melting curves in the
helix and coil states, respectively [45,47]. That is:

AhelixðTÞ ¼ bds þ mds � T ð3Þ

AcoilðTÞ ¼ bss þ mss � T ð4Þ

where bds, bss, mds, and mss are the intercepts and slopes of
the lower and upper baselines of the melting curves,
respectively; T is the temperature of interest in Kelvin, a is
the molar fraction of strands in the coiled state and can be
written as:

a ¼ 1 þ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2CT exp½ð�DH þ TDSÞ=ðRTÞ
 þ 1

p
CT exp½ð�DH þ TDSÞ=ðRTÞ
 ð5Þ

The enthalpy and entropy changes of each transition, as the
estimated parameters, are determined by the best fit to the
shape of the melting curves according to Eqns (2)–(5). The
resulting enthalpy change and entropy changes are obtained
by averaging all the fitted values at the different concentra-
tions. It should be noted that the above two methods imply
the assumption of DCp ¼ 0 [19–25,44–48].
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Temperature-dependent thermodynamic analysis

The differences in hydration between the structured duplex
strand and the coiled single strands gives rise to an increase
in the heat capacity [27,49–52], resulting in a clear
temperature dependence of the enthalpy and entropy
changes [36–42]. With respect to the reference state, the
enthalpy and entropy changes as a function of temperature
are given by [14,28,39,53–56]:

DHðTmÞ ¼ DH0 þ
Z T

T 0

DCp;HdT

¼ DH0 þ DCp;HðTm � T 0Þ ð6Þ

DSðTmÞ ¼ DS0 þ
Z T

T 0

DCp;SdlnT

¼ DS0 þ DCp;S lnðTm=T
0Þ ð7Þ

where DH and DS are the enthalpy and entropy changes at
the temperature of interest, DH 0 and DS 0 are the enthalpy
and entropy changes in the reference state, T 0 is the
reference temperature, DCp,H is the heat capacity change in
enthalpy derived from a linear regression of the enthalpy
change with respect to the melting temperature
(DCp,H ¼ dDH/dTm), and DCp,S is the heat capacity
change in entropy derived from a linear regression of the
entropy change with respect to the logarithmic scale of the
melting temperature (DCp,S ¼ dDS/dlnTm). In principle,
the heat capacity changes determined by the above two
methods should be equivalent. However, Rouzina &
Bloomfield analyzed the published data on DH and DS
of the duplex formation and revealed that there were
always differences between DCp,H and DCp,S [28]. Such
differences in heat capacity change were theoretically
confirmed and the arithmetic mean value, DCave

p ¼
(DCp,H + DCp,S)/2, was suggested [28]. These observations
are further confirmed by recent studies [55]. Thus, the free
energy change at the temperature of interest can be written
as [54]:

DGðTmÞ ¼DH0ð1 � Tm=T
0Þ

þ DCave
p ½Tm � T 0 � Tm lnðTm=T

0Þ
 ð8Þ

The mean values of thermodynamic parameters

ForDCp ¼ 0, the statisticalmean values of the enthalpy and
entropy changes, DHmean and DSmean, are simply given by:

DHmean ¼
Pm

i¼ 1 DHi

n
ð9Þ

DSmean ¼
Pm

i¼ 1 DSi

n
ð10Þ

where DHi and DSi are the enthalpy and entropy changes at
each concentration. n is the number of measurements.

For DCP 6¼ 0, DH(T) and DS(T) should be taken as a
continuous function of the melting temperature on the
temperature interval [Tmin, Tmax] (Eqns 6 and 7), as a result,
the mean values of the temperature-dependent enthalpy and
entropy changes can be written as:

DHmean ¼ DH0 þ DCave
P ðTmean � T 0Þ ð11Þ

DSmean ¼ DS0 þ DCave
P lnðTmean=T

0Þ ð12Þ

where Tmin and Tmax are the minimum and maximum
temperatures over the experimental temperature range,
respectively. Tmean is the arithmetic mean value of Tmin and
Tmax, i.e. Tmean ¼ (Tmin + Tmax)/2. Likewise, the melting
temperature at the concentration of interest, CT, can be
given by:

Tm ¼
DH0 þ DCave

p ðTm � T 0Þ
RlnðCT=4Þ þ DS 0 þ DCave

p lnðTm=T 0Þ ð13Þ

R E S U L T S A N D D I S C U S S I O N

Temperature-independent thermodynamic parameters

In contrast to the temperature-dependent thermodynamic
parameters of the 24 DNA/DNA and 41 RNA/DNA
oligonucleotide duplexes (Table 1), the temperature-inde-
pendent thermodynamic parameters (data not shown)
clearly depend on the experimental temperature range.
Direct comparison of the two parameter sets revealed that
the temperature-independent thermodynamic parameters
could provide a reasonable approximation only when the
temperature of interest deviates only slightly from the mean
melting temperature over the experimental range (data not
shown).

Heat capacity change

It is well known that the heat capacity change is the net
sum of the positive contribution from the exposure of
nonpolar groups and the negative contribution from the
exposure of polar groups [49,51]. When the structured
double strand is melted into the coiled single strands, the
difference in hydration between the different strands
results in an increase of the heat capacity. This heat
capacity change is related to the ratio of the nonpolar to
polar buried surface in an oligonucleotide duplex [27,49–
52]. Figures 1 and 2 show the representative plots of
temperature dependence of the enthalpy and entropy
changes for the different base-pair compositions and
sequence lengths. As the perturbation contributed from
the enthalpy and entropy changes might be different in
the course of duplex melting, the heat capacity change in
enthalpy, DCp,H, is not always in agreement with the heat
capacity change in entropy, DCp,S, as summarized in
Table 1. Nevertheless, these differences are mostly limited
to 5%. Recently, Rouzina & Bloomfield theoretically
confirmed that the difference between DCp,H and DCp,S

should equal the transition entropy [28]. The current
experimental studies strongly support this conclusion [55].
Similar reports have also been seen in previous studies
[39]. This insight suggests that the extent of enthalpy and
entropy changes along with temperature might be differ-
ent in the real course of the duplex melting. The heat
capacity change depends somewhat on the base-pair
compositions and sequences; the mean values are gener-
ally limited in the range )160 to )40 calÆmol)1ÆK)1 per
base-pair (see Fig. 3), consistent with the previous spect-
roscopic [28,39–42,55,56] and calorimetric measurements
[27,34,36]. Additionally, the current studies further
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confirmed that the heat capacity changes derived from the
spectroscopic and calorimetric measurements were in
good agreement [54].

Temperature-dependent enthalpy and entropy changes

As the enthalpy and entropy changes are state functions,
their values, in nature, are dependent on the temperature of
interest. Table 1 summarizes the thermodynamic para-
meters of the 24 DNA/DNA and 41 RNA/DNA duplexes
at standard temperature (25 �C) and physiological
temperature (37 �C). Direct comparison shows that the
temperature-independent and temperature-dependent ther-
modynamic parameters are clearly different, while the two
mean values of the thermodynamic parameters derived
from DCP¼ 0 and DCP 6¼ 0 are in excellent agreement (data
not shown). These observations further support that the
assumption of DCP ¼ 0 would be more reasonable only
when the statistical mean values of the thermodynamic
parameters are taken into account.

To our knowledge, the published nearest-neighbor model
parameters were generally extracted from the temperature-
independent thermodynamic data of the oligonucleotide
duplexes [16–25,57]. This requires that the melting tempera-

tures of all the investigated sequences should have a small
deviation from 37 �C over the experimental range. How-
ever, with the intrinsic limitation of the UV measurements,
it is impossible to determine the thermodynamic parameters
at the same temperature for all the duplexes only by

Fig. 1. The representative temperature dependence of the thermody-

namic parameters for various base-pair compositions. (A) DH vs.Tm; (B)

DS vs. lnTm. rCGCUGUAA/dTTACAGCG (h), rCACGGCUC/

dGAGCCGTG (·), rACCUAGUC/dGACTAGGT (n), rAGU

CCUGA/dTCAGGACT (s), and rGAGCCGUG/dCACGGCTC

(e).

Fig. 2. The representative temperature dependence of the thermody-

namic parameters for various base-pair lengths. (A) DH vs. Tm; (B) DS
vs. lnTm. rAGCCG/dCGGCT (h), rCGGUGC/dGCACCG (·),
rACGUAUG/dCATACGT (n), rACCUAGUC/dGACTAGGT

(s), and rGUAACAGCG/dCGCTGTTAC (e).

Fig. 3. Heat capacity change vs. the number of base pairs for DNA/

DNA (s) and RNA/DNA (d) oligonucleotide duplexes.

2826 P. Wu et al. (Eur. J. Biochem. 269) � FEBS 2002



temperature-independent thermodynamic analysis. In other
words, the experimental temperature rangemay be far lower
than 37 �C for shorter oligonucleotide sequences or higher
than 37 �C for longer oligonucleotide sequences. As a result,
the simple extrapolation of the thermodynamic parameters
to 37 �C is completely necessary. In this case, Eqns (6) and
(7) provide a reasonable and valid way to estimate the
thermodynamic parameters at the temperature of interest.

With the difference in detecting principles, the strand
concentrations of the UV measurements are generally
smaller than those of the DSC measurements for the same
nucleotide sequences. Such differences in the strand con-
centration are rarely taken into account in the previous
reports when the van’t Hoff enthalpy changes were com-
pared with the calorimetric enthalpy changes [30,31,33]. In
fact, the melting temperature essentially depends on the
strand concentration for a bimolecular transition. This
implies that due to great different in the strand concentra-
tion, the van’t Hoff enthalpy change derived from the
temperature-independent thermodynamic analysis should
be different from the calorimetric enthalpy change. If the
two enthalpy changes were compared at the same tempera-
ture, the clear deviation would be cancelled. Recent studies
have confirmed that there should be not statistically
significant discrepancies in the enthalpy change when the
heat capacity changes were taken into account [54,55]. As an
alternative method, a plot of T � 1

m vs. ln(CT/4) by combining
the UV and DSC measurements was used [26].

Enthalpy–entropy compensation

Figure 4 shows the compensation correlation of the
temperature-dependent enthalpy and entropy changes for
all the sequences listed in Table 1. Although a rectangular
hyperbola relationship between the enthalpy and entropy
changes was proposed [28,58], the plot in Fig. 4 is an
approximate straight line [21,48,52,53,59]. The empirical
correlation of the temperature-dependent enthalpy and
entropy changes can be given by:

DH ¼ 0:983 � TmDS� 8:218 ð14Þ
where the correlation coefficient is 0.997 and the standard
deviation is 0.734, respectively. This reflects the fact that the
enthalpy–entropy compensation is significant and a large
increase in the enthalpy change is necessarily accompanied
by the large increase in the entropy change. Compared with
the compensation of the temperature-independent enthalpy
and entropy changes reported in a previous study (DH/
TmDS ¼ 1.15 [48]), the extent of the compensation of the
temperature-dependent enthalpy and entropy changes
might be more significant.

The effects of heat capacity change on the free energy
change and melting temperature

The free energy change and melting temperature are two
critically important parameters, which are often used to
characterize the stability of base pairing, to predict secon-
dary or tertiary structures of nucleic acids, and to determine
the optimal temperature in PCR, RCA, and in situ
hybridization. In contrast to clear temperature-dependence
of the enthalpy and entropy changes, the free energy change
andmelting temperature are relatively insensitive to the heat

capacity change (data not shown). This suggests that the
free energy change determined by DCp ¼ 0 would be a more
accurate parameter than either the individual enthalpy
change or entropy change [13,21,39,52,53]. These observa-
tions have been confirmed by the DSC measurements, in
which, despite an almost 100% difference in the two
enthalpy changes for the investigated duplexes, the trans-
ition temperatures determined by the DSC measurements
were in excellent agreement with the melting temperatures
of the corresponding concentrations linearly extrapolated
by the UV measurements [31].

The improved NN-model parameters

The nearest-neighbor model has been widely applied to
predict the thermodynamic properties and secondary or
tertiary structures of the sequence-dependent nucleotides
[1–4,8]. In this model, the contribution of a given sequence
to the thermodynamic properties is assumed to be directly
related to the identity of the nearest-neighbor doublets and
to have a linear dependence on the occurrence of these
nearest neighbors [17,19,21,22,25,48,60,61]. Herein, we
attempted to extract the NN-model free energy parameters
at physiological temperature from the temperature-depend-
ent thermodynamic data of the 41 RNA/DNA hybrids
listed in Table 1 (see Table 2). As for the previous study

Fig. 4. Compensation plot of temperature-dependent enthalpy and

entropy for 5 bp (h), 6 bp (·), 7 bp (n), 8 bp (s), and 9 bp (e). (A) A

plot of DH vs. DS; (B) A plot of DH vs. TmDS. The straight lines were

obtained by linear regression.
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[19], we find that the two NN-model free energy sets have
nearly identical trends but there are clear differences for
many nearest-neighbor sequences and helix initiation (see
Table 2). Nevertheless, the mean values of 16 NN-model
parameters determined by two different methods are similar
()1.5 kcalÆmol)1 for DCp ¼ 0 and )1.2 kcalÆmol)1 for
DCp „ 0). A possible interpretation is that the two studies
selected different oligonucleotide sequences and applied
different thermodynamic analysis methods. As the thermo-
dynamic parameters derived from DCp ¼ 0 clearly depend
on the experimental temperature range, it is impossible to
determine the thermodynamic parameters at exactly 37 �C
for all the investigated duplexes only by the temperature-
independent thermodynamic analysis, thus small deviations
in the free energy change of different sequences would
accumulate and result in a large contribution to the
NN-model parameters.

It should be noted that the published NN-model param-
eters were generally extracted from the temperature-inde-
pendent thermodynamic data [17,19,21,22,25]. It is not
surprising that some disagreement in the NN-model
parameters has been revealed by several laboratories
[17,20–22,57,62,63]. Although the unified NN-model
parameters were suggested to be the salt concentration
dependence of the oligonucleotide sequences [64], the heat
capacity change would be an important factor [34,37–
42,54,55]. Moreover, the primary results of Turner and
coworkers confirmed that the NN-model parameter sets
derived from the temperature-independent thermodynamics
were somewhat different from those derived from the
temperature-dependent thermodynamics [65]. Our work

extended their studies and extracted the NN-model free
energy parameters from the temperature-dependent ther-
modynamic data. This improvement will enhance the
accuracy of the predictions of the secondary or tertiary
structures for nucleotide hybrids in vivo.
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