
Algorithm for Coding DNA Sequences into

”Spectrum-like” and ”Zigzag” Representations

Jure Zupan and Milan Randic

J. Chem. Inf. Model. 2005, 45, 309-313

Summary by Elizabeth Doman

The authors of this paper present an algorithm for representing long
strings of building blocks. The building blocks could be, for example, the 4
DNA bases (A- adenine, C- cytosine, T- thymine, G- guanidine), the 20 nat-
ural amino acids (from Alanine to Valine), or all 64 base triplets (from AAA
to TTT), making up a long sequence of DNA. Their focus is on creating a
more visually suitable representation of a given DNA sequence, while at the
same time retaining as much of the original information as possible. The
algorithm presented here is capable of calculating a 1-D, 2-D, or 3-D repre-
sentation of a given sequence of DNA. In particular, these representations
are reversible, or invertible, which means that the entire representation, and
thus the entire DNA sequence, can be reproduced from knowing the coor-
dinates of the last point only. This implies that the information contained
in an entire sequence of DNA could be stored as just one single coordi-
nate point (one number in 1-D, two numbers in 2-D, or three in 3-D). The
representation is so called because a ”spectrum” of numbers is created by
assigning each building block to a distinct point in space. When the con-
secutive numbers of the ”spectrum” are plotted, their pathway appears to
”zigzag” through space.

This paper extends the work of Jeffery (1990, see reference in article)
from 2-D representations to both 1-D and 3-D. Jeffery represented a entire
DNA sequence, having 10,000 to 100,000 nucleic acids, in a single planar
square. He did this by assigning each of the four corners, (-1,-1), (-1,1), (1,1),
and (1,-1), to one of the four nucleic acids, A,T, G and C, respectively. Given
a DNA sequence, start in the center, (0,0), and move halfway to the corner
assigned to the first nucleic acid in the sequence to be coded. From this
point, continue to the halfway point between it and the corner assigned to
the second nucleic acid in the sequence. Continuing in this way, ”zigzagging”

1



2

through space, each base in the sequence will be assigned a unique point in
space. This assignment contains information describing both the identity
and location in the sequence of each base. In the end, the sequence of DNA
will be represented by a ”spectrum” of points located in the unit square.

Clearly, the assignment of the four bases to one of the corners of the
square is arbitrary, and leads to 24 possible different coding schemes. Four of
these can be mapped onto other ones by rotation, producing only 6 different
possible maps. In turn, three of these can be mapped onto another one by
reflection, leaving only 3 distinctly different representations. In particular,
these three curves are associated with the diagonal assignments of A-G, A-T,
and A-C.

The work of this paper is in extending the code from 2-D to both 3-
D and 1-D. The extensions are not difficult to make, and follow the same
framework as the above described 2-D representation. The 3-D extension is
done by using the four corners of a tetrahedron, (1,-1,-1), (-1,1,-1), (-1,-1,1),
and (1,1,1). In this case, only two different variations of the code of the
sequence can be obtained.

In 1-D, only the x coordinates are used. For example, x = −1 would be
assigned to both A and C, while x = 1 would be assigned to both T and G.
This leaves no way to distinguish between A and C or T and G during the
decoding process, creating the inherent loss of very important information.
This problem will be addressed in later paragraphs.

The algorithm for coding is really quite simple, and rather beautiful.
Denote the jth unit of the N unit long DNA sequence by seq(j). Then,
S(xj , yj , zj), the jth point of the 3-D ”zigzag” or ”spectrum-like” representa-
tion, is obtained from its predecessor according to the recursive relationship,

S(xj+1, yj+1, zj+1) =
S(xj , yj, zj) + S(xseq(j+1), yseq(j+1), zseq(j+1))

2
(1)

in 2-D by,

S(xj+1, yj+1) =
S(xj , yj) + S(xseq(j+1), yseq(j+1), zseq(j+1))

2
(2)

or in 1-D by,

S(xj+1) =
S(xj) + S(xseq(j))

2
(3)

where S(x0, y0, z0) = (0, 0, 0) in 3-D, S(x0, y0) = (0, 0) in 2-D, or S(x0) = 0
in 1-D.

The notable aspect of the relation is that, in both 2-D and 3-D, the re-
cursive relationship is invertible. In other words, if the coordinate of the last



3

point in the representation is known, the entire representation can be repro-
duced, and hence the DNA sequence recovered. Therefore, an entire DNA
sequence can be described by just the very last point in the representation.

Given a point in the representation, the base which is describes is deter-
mined by the location of the point with respect to all the corners (or end
points in 1-D). The closest corner to which the point is located determines
what base that point represents. For example, in 2-D, if the the bottom left
corner (-1,-1) is assigned to A, and the point of interest is located in the
bottom left quadrant of the plane, then that point represents the base A.

In the forward coding process, the current coordinate value is halved
to define the next coordinate point. Therefore, given a current point, the
previous point can be determined by taking the distance between that point
and the closest corner (or end point in 1-D) and doubling it symmetrically
over that current point. In this way, given the last single point in the
representation, we can work backwards to obtain the entire representation,
and hence the DNA sequence which it describes.

However, the information loss in the 1-D problem makes it impossible to
invert. One way to resolve this problem is by further assigning each point
a black/white label (or a binary digit ”0” or ”1”). In this way, one could
label the A and T bases white (or ”1”), and the C and G bases black (or
”0”). This ensures that the 1-D representation is reversible. Another way to
overcome the loss of information in the 1-D case is to expand the positions
of the bases to different numbers on the x-axis. For example x= -2, -1, 1,
and 2 could be assigned to A, C, G, and T respectively, with x = 0 as a
starting point. In this case, the representation would still be described by
the same recursive definition as before, but would now be invertible.

In general, the number of basic units of a sequence in not limited to
four, but any finite number of building blocks could be used. The only
requirement is that the 1-D, 2-D, or 3-D coordinates denoting the positions
of the building blocks be known and fixed. For example, the 64 base triplets
(AAA, AAC, ..., TTT) could be used as building blocks to define a 1-D
representation of a DNA sequence. The triplets positions on the x axis
could be defined by assigning x = −32 to AAA, and x = −31 to AAC, and
so on, at last assigning x = +32 to TTT. This is just one example that
might work nicely, and there are many other distributions that might be
interesting for different reasons.

In the paper, the algorithm is illustrated for the first 10 bases of the first
exon in the human β-globine gene. Along with a table of the coordinates of
consecutive bases, a visual representation of the sequence is shown in 1-D,
2-D, and 3-D. The visual graphs of the ”spectrum-like” representation do



4

indeed follow a ”zigzag” pathway through space (see figures in article).
If a bunch of sequences are represented in this ”spectrum-like” way,

the coordinates can be compared to one another (for example, using the
Euclidean distance as a measure of similarity). The representations can then
be hierarchically clustered into a dendrogram. This technique is illustrated
in the paper, using both the 2 and 4 point 1-D coding scheme, on the first
exon of the β-globine gene for 10 different species. The results are similar
in both cases, and accurately organize the genes into clusters of similarity.

The algorithm presented in this paper has many benefits. It transforms
any DNA sequence into a 1-D, 2-D, or 3-D visual graph that seems to
”zigzag” through space. It assigns each base (or whatever building block
you choose) in the sequence to a distinct point in space, giving the sequence
a ”spectrum-like” representation. An entire representation can be repro-
duced by knowing only the single last point of the representation (assuming
the assignments of the bases to given corner points are known). This im-
plies that huge amounts of data (DNA sequences of 100,000 base pairs) can
be represented by a single point, assuming that enough digits are used to
accurately reproduce the data. Furthermore, the algorithm is not restricted
to using only 4 building blocks, and is capable of transforming sequences
composed of any number of units. Along with such applications as hierar-
chical clustering, the consequences of this type of representation could be
widespread. It is a very clever and simple way to store the complicated
information contained in a long sequence of DNA- pretty neat!


