## Math 2280-1 Notes of August 26, 2022

### 1.3 Slope Fields and Solution Curves

- Continue to consider

$$
y^{\prime}=\frac{\mathrm{d} y}{\mathrm{~d} x}=f(x, y)
$$

Theorem 1. (p.22) Suppose that both the function $f(x, y)$ and its partial derivative $D_{y} f(x, y)$ are continuous on some rectangle $R$ int the $x y$-plane that contains the point $(a, b)$ in its interior. Them for some open Interval $I$ containing the point $a$, the initial value problem

$$
\begin{aligned}
& \frac{\mathrm{d} y}{\mathrm{~d} x}=f(x, y), \quad y(a)=b \\
& \text { nly one solution that is defined on the inter- } \\
& \text { Ery about proving the theorem. There are } \\
& \text { Es that focus on proofs of results like this, } \\
& \text { ourse. } \\
& \text { nce and uniaueness are not a problem. }
\end{aligned}
$$

- Usually existence and uniqueness are not a problem.
- Today we'll have fun drawing solution curves.
- There are many computer packages available for this purpose.
- I was hoping to show you some particular software, but I can't get it to work on my Ipad.
- Instead I found one online
- check out

> https://aeb019.hosted.uark.edu/dfield.html

- Recall definition of slope field.
- Associate a small line segment with slope $f(x, y)$ with every point ( $\mathrm{x}, \mathrm{y}$ ) in the plane.

$$
\begin{gathered}
P^{\prime}=k P \\
\frac{\mathrm{~d} P}{\mathrm{~d} t}=k P(M-P)
\end{gathered}
$$

(logistic equation)

$$
\frac{\mathrm{d} P}{\mathrm{~d} t}=k(P-m)(M-P)
$$

(logistic equation)

$$
\begin{aligned}
& y^{\prime}=y^{2} \\
& \frac{d P}{d t}=k P^{p} \quad y^{\prime}=y P \quad \frac{d y}{d t}=y^{P} \\
& x^{2}+y^{2}=r^{2} \\
& y^{\prime}=-\frac{Y}{X} \\
& 2 x+2 y y^{\prime}=0 \\
& y^{\prime}=\frac{-x}{y} \\
& y^{\prime}=x-y \\
& v^{\prime}=-g+k v
\end{aligned}
$$

(air resistance!)

$$
v^{\prime}=-g+k v^{2}
$$

(air resistance!)

$$
y^{\prime}=1 / x
$$

(Example 5)

$$
\frac{\mathrm{d} P}{\mathrm{~d} t}=k P(M-P)
$$

(logistic equation)

Math 2280-1 Notes of August 26, 2022 page 3




