Math 2270-1

Notes of 11/1/19

6.2 Orthogonal Sets

e Recall: two vectors u and v are orthogonal
if T
SUVr = UV = uev=0.

e A set of vectors {u;,ug,...,u,} from R" is
an orthogonal set if each pair of distinct

vectors from that set is orthogonal, i.e.,

i#£j] = u;eu; =0.

e Examples: 0
— The standard basis of R". [!e,, iy 16 % € - [(')}Q 4L
— The set {u, 0}.
— Example 1, textbook, the set

31 [-1] [-1/2

s=<{11].,]2|,| -2
1 1 7/2/
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e Theorem 4, p. 340, textbook. If

S ={u,uy,...,u,}

is an orthogonal set Vectors in
IR", then S is linearly indeperrdent. (Hence S

is a basis of Span(S).)
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e Naturally, an orthogonal basis for a sub-
space W of IR" is a basis for W that is also
an orthogonal set.

e For example, the set in Example 1 is an or-
thogonal basis of R>.

e Orthogonal Bases are nice! You can compute
coefficients without solving a linear system.

e Suppose
B ={u,uy,...,u,}
is a basis of a subspace W of R",
B =[uj,ug,...,u,],

and y is a vector in W. Then, in general,
computing the coordinate vector

C1
C2
ylg =

L cp

of y requires the solution of the linear system
Blylg =v.

e However, if B is an orthogonal basis we can
compute the components of [y|g directly:

yeu;

Cj = .
llj‘llj
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e Example 2, p. 341. Express the vector

set ", U, Us
3| [—1] [ ~1/2 7 M 23
S=<|[1],] 2|, -2 atg - 7

1 1 7/2
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Orthogonal Projections onto a Line

e Again, thisis a review and generalization from
Math 2210.

e Given a non-zero vector u in R" we wish to
write y in IR™ as a multiple of u and a vector
orthogonal to u.

/

e That is we wish to write

7

zeu—=_0.

where

e We want formulas for @ and z. They are easy
to obtain.
(\/* 0( M) » [/L = O
Veu = ol U u
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e Example 3, pg. 342, textbook. Let

y=[5] ma u=[3]

Write y as a linear combination of a vector in
Span{u} and a vector that is orthogonal to u.

o = \ el HO _ o
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Figure 1. Example 2.
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e An orthogonal set is called an orthonormal
set is all of its vectors are unit vectors.

e Example: The standard basis, and any (nonempty)
subset of it.

e Theorem 6, p. 345. An m X n matrix U
has orthonormal columns if and only if

Trr —
=1
Nnkng mxn
(where I is the n x n identity matrix.).
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e Theorem 7, p. 345. Let U be an m x n
matrix with orthonormal columns, and let x
and y beZVGCtOI‘?S/ in R". Then:

a. [|Ux| = [lx]]
b. (Ux)e (Uy) =xey
c. (Ux)e(Uy)=0 ifandonlyif xey=20

T
(U () = (Ux) i)
= TM U~
- x'y =xy
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The Pythagorean Theorem

e Suppose u and v are orthogonal. Then

lu £ v = [luf* +[lv]*.

e More precisely, we should say that

lutv|®=ul* +|v[* <= uev=0.

\V

2
(lu-vIl = (M*\/)T[Du\/)
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