
Orthogonally Diagonalizable Matrices

These notes are about real matrices�matrices in which all entries are real numbers. Complex

numbers will come up occasionally, but only in very simple ways as tools for learning more

about real matrices.

Review

An  matrix  is called if we can write  where  is a8 ‚ 8 E E œ THT Hdiagonalizable �"

diagonal matrix.  This is possible if and only if there is a basis ...   for Ö ß ß ×, , ," # 8  ß
8  ‘

where the 's are eigenvectors of   The corresponding eigenvalues sit along the,3 EÞ
diagonal of . and the matrix [ ...   ].  Thus , the “change ofH T œ T œ T, , ," # 8    U 

coordinates” matrix:  and T Ò Ó œ T œ Ò Ó ÞU U UU
B B B B�"

E “acts like” a diagonal matrix when we change coordinates: more precisely , the

mapping (in standard coordinates) is the same as   (written inB B B BÈ E Ò Ó È HÒ Ó U U

U-coordinates).

An  is a square matrix for which ;  , anorthogonal matrix equivalentlyY œ Y�" X

orthogonal matrix is a square matrix with orthonormal columns.

Definition  An  matrix  is called 8 ‚ 8 E orthogonally orthogonal diagonalizable if there is an 

matrix  and a diagonal matrix  for which  Y H E œ YHY Ð œ YHY ÑÞ�" X

Thus, an orthogonally diagonalizable matrix is a special kind of diagonalizable matrix: not only

can we factor , but we can find an  matrix  that works. In thatE œ THT Y œ T�" orthogonal

case, the columns of  form an  basis for .  We want to know which matrices areY orthonormal ‘8

orthogonally diagonalizable. The  that appears later in these notes will give usSpectral Theorem

the answer.

Definition   E E œ E Þis called a  if symmetric matrix X

Notice that a symmetric matrix  must be square ( ?).E why

Example    If  is square.  is also symmetricE is any matrix (square or not), then E E E EX X

because ÐE EÑ œ E E œ E EÞX X X XX X

The next result tells us that only a symmetric matrix “has a chance” to be orthogonally

diagonalizable.  This is the “easy half” of the Spectral Theorem.

Theorem If  is orthogonally diagonalizable, then  must be symmetric.E E

Proof  Suppose that  is diagonal,  orthogonal and .H Y E œ YHY œ YHY�" X

Then , so  is symmetric.  E œ ÐYHY Ñ œ Y H Y œ YHY œ E E ñX X X XX X X X



To completely understand which matrices are orthogonally diagonalizable, we need to know a bit

more about symmetric matrices.  For instance, a property that  symmetric matricescharacterizes

is how nicely they interact with the dot product.

Theorem     An  matrix  is symmetric   for all vectors and8 ‚ 8 E E † œ † Eif and only if B C B C B
C in ‘8

Proof   i) Let  be in For   matrix B Cß Þ 8 ‚ 8 E‘8 any

  (*)E † œ ÐE Ñ œ E œ † EB C B C B C B CX X X X     

If  is symmetric, then  and equation (*) becomes .E E œ E E † œ † EX B C B C

 ii) Suppose for all vectors and in .   Let ,  be theE † œ † E ÞÞÞßB C B C B C + + ‘8 " 8

columns of .   Then for all ,E " Ÿ 3ß 4 Ÿ 8

   the  entry in .E † œ † œ + œ Ð4ß 3Ñ E/ / + /3 4 3 4   43

    ll
    the  entry in / / / +3 4 3 4† E œ † œ + œ Ð3ß 4Ñ E34

so  is symmetricE Þ ñ

The next result about symmetric matrices uses a few facts about complex numbers.

Review

A complex number has the form  where  and  are real and   ForD œ + � ,3 + , 3 œ � "Þ#

D œ + � ,3 D D œ + � ,3 D�, the conjugate of  is  .  Clearly,  is a real number if and only if

, œ ! D œ D Þ�, and this happens if and only if 

‚ ‘ ‚ is the set of all complex numbers, and .©

For the  of is  (a real number).  ClearlyD − Þ D lDl œ + � ,‚ magnitude È # #

DD œ + � , œ lDl Dß A − Þ� �# # #, and for every , it is easy to check that ‚ DA œ D A�
___

For a matrix with complex entries,  denotes the  where each  in E E + E
�

conjugate matrix 34

has been replaced by .  So  is a  matrix if and only if 
__
+ E E œ E

�
34 real

We also use the Fundamental Theorem of Algebra ( ). It tells us thata much deeper result! 

if we allow complex numbers, then every polynomial factors completely into linear factors.

In particular, every characteristic polynomial  factors completely asGÐ Ñ-
GÐ Ñ œ Ð � ÑÐ � Ñ ÞÞÞ Ð � ÑÞ 8 ‚ 8 E- - - - - - -" # 8   Therefore every  matrix 

has  eigenvalues for example, if the factor  repeats8 � Ð � Ñif we count by multiplicities - -3

exactly three times, then  counts as three eigenvalues.-3



Here is the next important fact about symmetric matrices.

Theorem  If  is a (real)   matrix, then  has   eigenvalues (E 8‚ 8 E 8symmetric real counted by

their multiplicitiesÑ. For each eigenvalue, we can find a real eigenvector associated with it.

Proof  According to the Fundamental Theorem of Algebra,  has eigenvalues ,E ÞÞÞ ß- -" 8

(possibly with some duplicates listed because we count by multiplicities).  Because  isE
symmetric, we will show that each  must be a real number.-3

First, notice that for   the scalar  is a any complex vector realD D D
œ − ß ; œ E
D
ã
D

Ô ×
Õ Ø

"

8

8 X‚

number because ; ; À�œ
 

 ; œ E œ † E œ E † œ † E œ E œ E ;� � � � ��
D D D D D D D D D D D D œ
 
X X X

         Å Å                                

  because  is symmetric because  is real E E   

Let  be an eigenvalue and let  be one of its eigenvectors.-3

"

8

D œ
D
ã
D

Ô ×
Õ Ø

Then   D D D D D D D D� � � �E œ œ œ Ð † ÑX X X
3 3 3- - -

    .œ Ð D † D � D † D � ÞÞÞ � D † D Ñ œ ÐlD l � ÞÞÞ � lD l Ñ� � �- -3 " " # # 8 8 3 " 8
# #

But  is  and, on the right side of the equation,   is both D D� E ÐlD l � ÞÞÞ � lD l ÑX # #
" 8  real real

and nonzero ( ).   Therefore  is real.why? -3 " 8
X # #œ E Î ÐlD l � ÞÞÞ � lD l Ñ�D D

Since each  is real,  is a  matrix and det  because  is an- - - -3 3 3 3E� M ÐE � MÑ œ !real

eigenvalue. So the  matrix equation has nonzero real solutions   In otherreal ÐE � MÑ œ Þ-3 B ! 

words, there are real eigenvectors for eigenvalue    -3Þ ñ

We are now ready to prove our main theorem.  The set of eigenvalues of a matrix is sometimes

called the  of the matrix, and orthogonal diagonalization of a matrix  factors  in aspectrum E E
way that displays all the eigenvalues and their multiplicities.  Therefore the theorem is called the

Spectral Theorem for real symmetric matrices.

The Spectral Theorem   A (real)  matrix  is orthogonally diagonalizable  8 ‚ 8 E Eif and only if

is symmetric.

Earlier, we made the easy observation that if  is orthogonally diagonalizable, then it isE
necessary that  be symmetric.  The Spectral Theorem says that the symmetry of  is alsoE E
sufficient:  a real symmetric matrix must be orthogonally diagonalizable. This is the part of the

theorem that is hard and that seems surprising because it's not easy to see whether a matrix is�
diagonalizable at all.

This is a proof by induction, and it uses some simple facts about partitioned matrices and change

of coordinates.



Proof  The proof is already half done. We only need to show that a (real)  symmetric8 ‚ 8
matrix  is orthogonally diagonalizable.E

This is obviously true for every  matrix if , then " ‚ " E À E œ Ò+Ó E œ Ò"ÓÒ+ÓÒ"Ó œ YEY ÞX Þ

Assume now that

 (**) every  symmetric matrix is orthogonally diagonalizable.Ð8 � "Ñ ‚ Ð8 � "Ñ

We will show that  (**)  it to be true that every  symmetric matrix (“the next sizeforces 8 ‚ 8
up”) must also be orthogonally diagonalizable.

If we can do this, we will have finished a proof by induction: because the theorem  trueis

whenever  is , then it  be true whenever  is ;   then, because itE " ‚ " E # ‚ # ,?>must also

is true whenever  is it  be true whenever  is ;  but then, becauseE # ‚ #ß E $ ‚ $must also

it is true whenever  is , it must  be true whenever  is but then  ... andE $ ‚ $ E % ‚ %àalso

so on, up to any size 8 ‚ 8Þ

Consider an  symmetric matrix  where   By the preceding theorem, we can find8 ‚ 8 E 8 / "Þ
a real eigenvalue  of , together with a real eigenvector   By normalizing, we can-" E Þ@"
assume is a  eigenvector.  Add vectors to extend  to a basis for  and then use@ @" "  unit Ö × ‘8

the Gram Schmidt process to get an  basis for orthonormal ‘ U8 À œ Ö ß ÞÞÞß ×Þ@ @" 8

Let the change of coordinates matrix for .  Because isT œ T œ Ò â Ó œ TU @ @ @" # 8 U

orthogonal,  Now look at the matrix .T œ T Þ T ET�" X �"

      is symmetric, because ñ T ET ÐT ETÑ œ ÐT ETÑ œ T E T�" �" X X X X X XX

      ,  andœ T ET œ T ETX �"

     its  is ñ T ET œ T E œ Tfirst column �" �" �"
"/ @ @" " "-

     œ T œ Ò Ó œ- - -" " "
�"@ @" " U

Ô × Ô ×Ö Ù Ö ÙÖ Ù Ö Ù
Õ Ø Õ Ø
"
! !
ã ã
! !

œ

-"

Using the symmetry, partition  as a “block matrix”   , where T ET
F

�" "” •- !
!

!  is a block

with  zeros,  and  is a , 8 � " F Ð8 � "Ñ ‚ Ð8 � "Ñsymmetric matrix.  Then  has size so ourF
assumption (**) says that   orthogonally diagonalizable:  there is a diagonal matrix F His w

and an  Ð8 � "Ñ ‚ Ð8 � "Ñ U F œ UH U U FU œ H Þ matrix  for which , or orthogonal w �" �" w

In the next set of calculations, you can check that the partitions of the matrices are sized

so that each multiplication by blocks is defined: the column partition of the first matrix

matches the row partition of the matrix to its right.

Define  a partitioned  matrix .  Since ,8 ‚ 8 œ
" " "
U U M

"

U
V œ ” • ” •” • ” •0 0

0 0

0

0 �"

!
!



we see that  is invertible:     Let  andV V œ Þ Y œ TV
"

U
�"

�"” •0

0

Y  is orthogonal (explain why a product of orthogonal matrices is orthogonal!)

Then  Y EY œ ÐV T ÑEÐTVÑ�" �" �"

         œ V V œ
F F U

"

U
"�" " "

�"” • ” • ” •” •- -! !
! !

0

0

0

0

         Å
       T ET�"

       œ œ œ
U F U FU

"
U H” •” • ” • ” •- - -" "

�" �"
"

w

! !

! !
!

!
0

0

 so                 Since  is a diagonal matrix, E œ Y Y Þ H œ
H H” • ” •- -" "
w w

�"! !
! !

we

have an orthogonal diagonalization of E À E œ YHY œ YHY ñ�" X

The Spectral Decomposition of a Real Symmetric Matrix

If  is a real  symmetric matrix, then we can orthogonally diagonalizeE 8‚ 8

E œ YHY œ YX

Ô ×Ö ÙÖ Ù
Õ Ø
-

-

-

"

8

X

! â !
! â !
ã ã ä ã
! ! â

Y Y œ Ò#   where ? ? ?" # 8â Ó 

is an orthogonal matrix and the 's are the eigenvalues corresponding to the   So-3 ?3's.

E œ Ò Ó œ Ò Ó

! â !
! â !
ã ã ä ã
! ! â

ã ã
? ? ? ? ? ?

? ?

? ?

? ?

" # 8 " # 8

" "

# #

8 8

â â    

Ô ×Ô × Ô ×Ö ÙÖ Ù Ö ÙÖ ÙÖ Ù Ö Ù
Õ ØÕ Ø Õ Ø
-

-

-

- - -

"

8

" # 8
#

X X

X X

X X

  

    œ Ò Ó œ
ã

- - - - - -" # 8 " # 8? ? ? ? ? � ? ? � � ? ?

?

?

?

" # 8 " # 8

"

#

8

" # 8â â        

Ô ×Ö ÙÖ Ù
Õ Ø

X

X

X

X X X (***)

The subspaces Span  are orthogonal straight lines through in .  Each  matrix Ö × 8 ‚ 8? ! ? ?3 3 3
X‘8

is the projection of the column space of onto Span .‘8 Ð EÑ Ö? ×3

So (***) says that  can be written as a linear combination ofE  projections onto  orthogonal8
“axes” in This linear combination uses all the eigenvalues (the spectrum) of  as weights,‘8Þ E
so (***) is called the spectral decomposition of .E



We can see this in detail by applying equation (***) to a point  in . We getB ‘8

 E âB œ ? ? B � ? ? B� � ? ? B- - -" # 8" # 8" # 8
XX X  

        œ ? ? † B � ? ? † B � � ? ? † B- - -" # 8" " # # 8 #â
 

              œ ? � ? � � ?- - -" # 8
B ? B ?
? †? ? †? ? †?

B ?† ††" 8

" " # # 8 8

#
" # 8â

              œ B � B � � B- - -" # 8proj proj proj? ? ?" # 8â

In other words, we can think of how the transformation by saying:B BÈ E  “works” 

 Rewrite  in  coordinates, where B ? ?U U œ Ö ß ÞÞÞß ×" 8

 For each ,  coordinate corresponding to the “axis” by the factor 3 U -?3 is rescaled 3

 The result is  -EB written in coordinatesU

 Convert back to standard coordinate version of if you like.EB

 In a diagram

      B B œ B  Ò E YHY�"

 convert to         convert back to standardU Æ Å
 coordinates           coordinates

       
rescale  coordinates

Ò Ó HÒ ÓB B
U

Ò
U

U

        ll ll
    Y Y�" �"B H B    

  “acts like” a diagonal matrix  working in the orthonormal coordinate system withE H
 axes established by the vectors ? ?" 8ß ÞÞÞß .

 Notice that the diagram also indicates how we can think of  when we have anB BÈ E
 “ordinary” diagonalization .   in the ordinary case, the newE œ THT�" But

 coordinate axes (determined by the columns of ) may not be orthogonal.  OrthogonalT
 diagonalization gives a new  coordinate system in terms of which we canorthogonal

 “picture” the transformation clearly.

  



How to orthogonally diagonalize a symmetric matrix

Now we know exactly   (real) matrices are orthogonally diagonalizable, but the which 8 ‚ 8 proof

of the Spectral Theorem doesn't give us a very effective way to actually do the calculations.

Fortunately, the following fact makes the actual computation of an orthogonal diagonalization

very similar to the steps we used for any other diagonalization.

Theorem   For a symmetric matrix , two eigenvectors from different eigenspaces must beE
orthogonal (so any two eigenspaces are orthogonal and, of course, have only the vector  in!
common).

Proof   If  and  are from different eigenspaces, they have different eigenvalues @ @" # - -" #Á Þ
Then , so- - -" # #@ @ @ @ @ @ @ @ @ @" # " # " # " # " #† œ E † œ † E œ † œ †
                    Å because  is symmetricE
Ð � Ñ † œ !Þ Ð � Ñ Á ! † œ !Þ ñ- - - -" # " #@ @ @ @" # " #   But , so      

To orthogonally diagonalize an  symmetric matrix  we can:8 ‚ 8 Eß

   Find the eigenvalues.  ñ The fact that  is symmetric doesn't really help much. AsE
 for any square matrix, finding the eigenvalues might be difficult. In a practical

 problem it will probably require computer assistance.

   The sum of the dimensions of the eigenspaces must be   we know  is  ñ 8 Ebecause

 (orthogonally) diagonalizable.  Find a basis for each eigenspace, and then use the Gram

 Schmidt process, as needed, to convert each basis to an orthonormal basis.

   Unite these orthonormal bases into a single collection  withñ œ Ö ß ÞÞÞß ×U ? ?" 8

  vectors.  Any two of these vectors and are orthogonal8 ? ?3 4  

  because of the Gram Schmidt construction if and  are� ? ?3 4 

      from  eigenspace, orthe same

  because of the preceding theorem, if and are from different� ? ?3 4  

      eigenspaces.

 Therefore  is an orthonormal basis for . The matrix U ‘8 Y œ Ò ÞÞÞ Ó? ? ?" # 8

 can be used to write an orthogonal diagonalization of .E



Example 1  Orthogonally diagonalize E œ
Ô ×
Õ Ø
" " "
" " "
" " "

 and write its spectral decomposition.

Find the eigenvalues:   The characteristic polynomial is

det
Ô ×
Õ Ø Š ‹ � 
" � " "

" Ð" � Ñ "
" " Ð" � Ñ

œ Ð" � Ñ Ð" � Ñ � " � "Ð" � � "Ñ � "Ð" � " � Ñ
-

-

-

- - - -#

œ Ð" � Ñ Ð" � Ñ � " � � œ � Ð" � ÑÐ# � Ñ � #- - - - - - - -Š ‹#    

œ � Ð" � ÑÐ# � Ñ � # œ � Ð � $ Ñ œ � Ð � $Ñ- - - - - - - -Š ‹ # # ,

so the eigenvalues are (multiplicity  and (multiplicity ).- -œ ! #Ñ œ $ "

Find orthonormal bases for the eigenspaces:

For - œ ! À ÐE � !MÑ  Solve B B !Þœ E œ   The augmented matrix

Ô × Ô ×
Õ Ø Õ Ø
" " " !
" " " !
" " " !

 row reduces to so the solutions are

1 1 1 0

0 0 0 0

0 0 0 0

 .   A  for the eigenspaceB œ
Ô × Ô × Ô ×
Õ Ø Õ Ø Õ Ø
B � " � "
B " !
B ! "

œ B � B
"

#

$

# $ basis

is , ŸÔ × Ô ×
Õ Ø Õ Ø
� " � "
" !
! "

For - œ $ À ÐE � $MÑSolve B !œ .   The augmented matrix

Ô × Ô ×
Õ Ø Õ Ø
� # " " ! " ! � " !
" � # " ! ! " � " !
" " � # ! ! ! ! !

row reduces to  so the solution is

B œ
Ô × Ô × Ô ×
Õ Ø Õ Ø Õ Ø Ÿ
B " "
B " "
B " "

œ B
"

#

$

$ .  A basis for the eigenspace is 

Ð
"
"
"

Notice that is orthogonal to each basis vector for the other eigenspace as must
Ô ×
Õ Ø �

be true for a symmetric matrix.   Uniting these bases of the eigenspaces would give a



basis diagonalize  of eigenvectors for  that we could use to .  But this would not‘$ E
orthogonally diagonalize  because, for example, the basis vectorsE

Ô × Ô ×
Õ Ø Õ Ø
� " � "
" !
! "

and are not orthogonal.  We still need to find an orthonormal

basis for each eigenspace.)

Find orthonormal bases

For - œ 0   Applying Gram Schmidt to the base gives an orthogonal basis

 Ÿ  ŸÔ ×
Õ Ø

Ô ×Ö Ù
Õ Ø

Ô × Ô ×Ö Ù Ö ÙÖ Ù Ö Ù
Õ Ø Õ Ø

� "
"
!

�

�

"

ß

�

!

�

�, so an orthonormal basis is ,

"
#
" "
#

"

#

#

"
'
"

'
#

'

È
È

È
È
È

For - œ $, normalizing gives an orthonormal basis  Ÿ
Ô ×Ö ÙÖ Ù
Õ Ø

"

$
"

$
"

$

È
È
È

Þ

Orthogonal Diagonalization of E À

     E œ YHY œ

� � � !

� � �

!

! ! !
! ! !
! ! $

X

" " " " "

# # #' $
" " " " " #

# ' $ ' ' '
# " " " "

' $ $ $ $

Ô × Ô ×Ö Ù Ö ÙÖ Ù Ö Ù
Õ Ø Õ Ø

Ô ×
Õ Ø

È È È È È
È È È È È È

È È È È È

Spectral Decomposition of E À

E œ !? ? ? ? ? ? ? ?" # $ $" # $ $
X X X X� ! � $ œ $ .    This shows us exactly how the transformation

B BÈ E  works:

    project onto the line Span Span  and then multiply by B  Ÿ  Ÿ
Ô ×Ö ÙÖ Ù
Õ Ø

Ô ×
Õ Ø

"
$
"
$
"

$

È
È
È

œ ß $
"
"
"



A  using the variables  means a term  Examples of degree twodegree two term B ß Þß ß ß ÞB B B Þ" 8 3 4

terms are  or but , , or  are  degree two terms.  A B B B B œ B ß B B B B B B" $ " " # " # $" "
# $ #

1 not quadratic

form linear combination degree two terms in  variables is a function that is a  of 8 UÐB ß = ß ÞÞÞß B Ñ" # 8

using ,..., .  Such a quadratic form can  be written in the formB B" 8 always

  , where B B BXE œ

Ô ×Ö ÙÖ Ù
Õ Ø
B
B
ã
B

E 8 ‚ 8

"

#

8

 and  is a  symmetric matrix.

Ð ÑSee details in the textbook.  The next example illustrates what happens.

Example 2   A quadratic form in 3 variables À

 UÐ Ñ œ UÐB ß B ß B Ñ œ B � B � B � #B B � #B D � #B BB " # $ " # " $ # $" # $
# # #

         (Note that the quadratic form  is not a linear function on U Ñ� 
B ‘$

Using  can write B Bœ
Ô ×
Õ Ø
B
B
B

ß
"

#

$

we UÐ Ñ œ

  UÐB ß B ß B Ñ œ" # $ B B œX # # #
" # $ " # " $ # $

Ô ×
Õ Ø
" " "
" " "
" " "

B � B � B � #B B � #B B � #B B ,

as you can check directly.   How was the matrix  created?  The entries are the coefficientsE +33 
(possibly ) of the terms in the coefficient of a “cross-product” term in ! B UÐ Ñà B B UÐ Ñ3

#
3 4B B  is

“split in half” to form the two entries  and  in  + + EÞ34 43 From Example 1,

E œ œ YHY

� � � !

� � �

!

! ! !
! ! !
! ! $

 

Ô × Ô ×Ö Ù Ö ÙÖ Ù Ö Ù
Õ Ø Õ Ø

Ô ×
Õ Ø

" " " " "

# # #' $
" " " " " #

# ' $ ' ' '
# " " " "

' $ $ $ $

X

È È È È È
È È È È È È

È È È È È
A change of coordinates now lets us understand the quadratic form much better: the columns of

Y œ Ö ×are an orthonormal basis  for . For notational convenience, we will use U ‘? ? ? C" # $ß ß $

to describe -coordinates:  U Ò Y œ Y
C
C
C

B C œÓ œU  . The change of coordinate matrix  relates
Ô ×
Õ Ø

"

#

$

U

the old and new coordinates:B B Cœ Y Ò Ó Ñ œ Y ÞU U   When we make this change of coordinates

we get   UÐ Ñ œ B � B � B � #B B � #B B � #B BB " # $
# # #

" # " $ # $

  œ B B C C C C C CX X X X XE œ ÐY Ñ EÐY Ñ œ Y EY œ H

  œ Ò C C C Ó" # $

Ô ×Ô ×
Õ ØÕ Ø
! ! ! C
! ! ! C
! ! $ C

œ !C � !C � $C œ $C
"

#

$

" # $ $
# # # #



In the new coordinates, all the cross-product terms like in the quadratic form haveB B" #

disappeared and only a linear combination of “pure” terms  remains.   (C ß C ß C" # $
# # # In this

particular example,  and also drop out because , as read from the diagonal ofC C œ œ !" #
# #

" #- -

H.)

You can imagine that we took the standard  axes and repositioned them (still orthogonalB B B" # $

to each other) in  to set up a new coordinate system.  Consider a geometric point in‘$ " # $C C C T
‘$ with no coordinates assigned for What is the value of the quadratic form  at this point?T Þ U
A  of  at the point  depends on the coordinates we choose:formula to find the value U T

 I   the “coordinate name” of  is andn standard coordinates: T ÐB ß B ß B Ñß" # $

 

  UÐTÑ œ UÐB ß B ß B Ñ œ" # $ B � B � B � #B B � #B B � #B B" # $
# # #

" # " $ # $

 :    the “coordinate name” of that point  now is  andIn -coordinatesU T ÐC ß C ß C Ñ" # $

  UÐTÑ œ $C$
#

 Be sure you understand that the numeric value of  at  does U T not change.

 B � B � B � #B B � #B B � #B B" # $
# # #

" # " $ # $ œ $C$
# because of how the coordinate

 systems are related.  It is the  to evaluate  at  that changes when theformula U T
 coordinate system changes.

One coordinate system may give us better insight.  For example, switching into the new C
coordinates makes it clear that there are infinitely many points where the quadratic form has

value for example, at every point  with .  In ! � T ÐC ß C ß C Ñ œ Ð-ß .ß !ÑC C coordinates " # $

coordinates, the formula also makes it clear that this quadratic form never has a negative value.



Example 2 illustrates some general facts about quadratic forms.

Every quadratic form in  variables can be written in form 8 UÐ Ñ œ EB B BX where

B œ

Ô ×Ö ÙÖ Ù
Õ Ø
B
B
ã
B

E

"

#

8

 and  is an  symmetric matrix.   can be orthogonally diagonalized8 ‚ 8 E

as , where the columns of  are an orthonormal basis  for and their correspondingYHY YX 8U ‘   

eigenvalues are listed along the diagonal of the diagonal matrix . If we write -coordinates asH U

C B C Cœ œ Y U

Ô ×Ö ÙÖ Ù
Õ Ø
C
C
ã
C

"

#

8

, then the substitution    converts the formula for evaluating  into 

coordinates:

        UÐ Ñ œ Y EY H C � ÞÞÞ � CC C C œ C C œX X X # #
" 8" 8- -

    

This fact is called the Principal Axes Theorem for quadratic forms:  there is a new

orthogonal coordinate system in which the formula for contains no mixed terms. When U U
is written in this form ,  then we see important information thatUÐ Ñ œC - -" 8"

# #
8C � ÞÞÞ � C

comes from the eigenvalues of .E

 If every eigenvalue , then  is  at every point except the origin-3 / ! U positive

 C !œ ,  and we say that the quadratic form is positive definite.

Similarly, if every eigenvalue , then  is  at every point except the origin-3 > ! U negative

C !œ , and we say that the quadratic form is negative definite.



If every eigenvalue , then  is always 0, but there may be many points where-3   ! U  
U œ ! Ð Ñ Usee Example 2) .  When this happens,  is called positive semidefinite.

If every eigenvalue , then  is always 0, but there may be many points where-3 Ÿ ! U Ÿ
U œ ! Ð Ñ Usee Example 2) .  When this happens,  is called negative semidefinite.

If  has an eigenvalue  and also another , then  will have some positiveE / ! > ! U- -3 4

values and some negative values.   is called an .  For example,U indefinite quadratic form

if  and , then  is always positive and  is alwaysUÐ Ñ œ C � C - / ! UÐ-ß !Ñ UÐ!ß -ÑC " #
# #

negative.

 

Example 3   We have seen examples earlier in the course where a coordinate change simplifies

the appearance of an equation.  For instance, when simplified in the right way, it's easy to see

that the set of points in that satisfy the following equation is an ellipse:‘#

      (*****)&B � %BC � &C œ '$# #

 

In general, when  is an  symmetric matrix, we say that an equationE 8‚ 8

   UÐ Ñ œ E œ -B B BX

describes a  in The ellipse is a quadric “surface” in quadric surface ‘ ‘8 #Þ Þ

We saw earlier in the course that a of axes by  creates a new coordinate system ,  in which1

%
w wB C

the equation (*****) becomes

    $ÐB Ñ � (ÐC Ñ œ '$w # w #

This is recognizable as an ellipse where the major and minor axes of the ellipse lie on the  andBw

Cw axes.  In our earlier look at this example, we did not describe  we found that particularhow

change of coordinates.

Since the left side of (*****) is a quadratic form, the Principal Axes Theorem suggests how to

eliminate the cross-product terms.  Using the notation B œ ” •BC , we can write

    &B � %BC � &C œ# # XB B” •& � #
� # &

The eigenvalues of the matrix are and .  Since each eigenspace is one dimensional, it- -œ $ œ (

is easy to find an orthonormal basis for each of them   and .  So weÀ  Ÿ  ŸÔ × Ô ×
Õ Ø Õ Ø

" "

# #
" "

# #

È È
È È

�



can orthogonally diagonalize  asE

 ” • ” •Ô × Ô ×
Õ Ø Õ Ø

& � # $ !
� # & ! (

œ E œ YHY œ
�

�
X

" " " "

# # # #
" " " "

# # # #

È È È È
È È È È

If we let then, as in Example 1 (and as promisedB B Bw wœ œ Y” •BC
w

w  and make the substitution  

by the Principal Axes Theorem) we get that

       &B � %BC � &C œ '$# #

 is the same as     $ÐB Ñ � (ÐC Ñ œ '$w # w #

The new coordinate axes  and  are orthogonal lines that contain the vectors B Cw w ” • ” •" � "
" "

 and 

(the columns of , but rescaled for neatness).   It is clear (Y draw the new axes in the

picture!) that the  -  axes are the result of rotating the original -  axes by B C B C Þw w
%
1

                                   



Example 4   This example gives us a chance to think look at the significance of orthogonal

diagonalization in a different way. It is based on an earlier example from the course, partly

reproduced here, in which we looked at the linear transformation  that reflects X À Ä‘ ‘ ‘# # #

across the line  and found the matrix for which C œ B XÐ Ñ œ E Þ"
# B B

 

X Ð Ñ œ " † C œ BB B Bif and only if  is on the line , so "
# we see (geometrically) that this line is an

eigenspace corresponding to eigenvalue .  Similarly, -" œ " XÐ Ñ œ Ð � "ÑB B B if and only if is

on the perpendicular line , so that line is an eigenspace corresponding to eigenvalueC œ � #B
-# œ � "Þ  Explain why there are no other eigenvalues/eigenspaces.

It's easy to give orthonormal bases for these eigenspaces   and À Þ
� Ÿ  ŸÔ × Ô ×

Õ Ø Õ Ø
# "

& &
" #

& &

È È
È È

This information is enough to immediately write down  in orthogonally diagonalized form:E

 .E œ YHY œ
� " !

! � " �
X

# " # "

& & & &
" # " #
& & & &

Ô × Ô ×
Õ Ø Õ Ø” •È È È È

È È È È

The primary point of this example is to think about how the geometry is “exhibited” in the

orthogonal diagonalization:  the matrix  “shows” you to the new coordinate axes, and  showsY H
you how B BÈ E  rescales the coordinates along those axes. We can multiply to get a single

matrix  but looking at the orthognoally diagonalized form should tell you more than looking atE

E œ
!Þ' !Þ)
!Þ) � !Þ'” •.



Constrained Maxima and Minima of Quadratic Forms

Example 5   In general, a quadratic form defined on might have values that areUÐ ÑB ‘8

arbitrarily large or small.  For example, consider UÐ Ñ œ B � %BC � C œB B B# # X” •" #
# � "

.

For a point moving out the positive -axis,  Similarly, ifB Bœ B UÐ Ñ œ + Ä ∞Þ” •+! #

B œ ” •!+ ß UÐthen B BÑ œ � + Ä �∞ C#  as moves up the positive -axis. 

In this example, the matrix  for the quadratic form has a positive eigenvalue  and aE &È
negative eigenvalue   What can you say about the values of a quadratic form � � & Þ UÈ
if, say, all eigenvalues are nonnegative?

An application might be set up so that we are only interested in the values for the ' inUÐ Ñ =B B
“the unit circle” . In that case,  has a œ W œ Ö − À ll ll œ "× U" #B B‘ maximum and a minimum

value:  among 's with ,B Bll ll œ "

   the maximum value of   largest eigenvalue of ñ UÐ Ñ œ & œ EB È
   the minimum value of smallest eigenvalue of .ñ UÐ Ñ œ � & œ EB È

Where exactly on  do these maximum and minimum values occur?W"

  at those points where the eigenspace for  intersects UÐ Ñ œ & & WB BÈ È "

                (that is, for 's with unit length in this eigenspace) andB

   at those points  where the eigenspace for  intersects UÐ Ñ œ � & � & WB BÈ È "

       (that is, for 's with unit length in this eigenspace)B

In this example, the eigenspaces are one-dimensional (straight lines through so  reaches! BÑß UÐ Ñ
its maximum value at the two diametrically opposite points on the unit circle , and similarlyW"

for the minimum value.

Can you find the maximum and minimum values for  on  and where they occur, usingUÐ Ñ WB "

calculus but no linear algebra?



To visualize this:

We verify these statements by proving a theorem that describes what happens in general.  always

happens. The proof uses only linear algebra (no calculus).

In the theorem, the  refers to the set of all points that are distance  from theunit sphere in ‘8 "
origin.  We write the unit sphere as .  For example,  is the unitW œ Ö − À ll ll œ "× W8�" 8 #B B‘

sphere in visualize it as the surface of a basketball centered at the origin.‘$ �

Theorem    Let be a quadratic form, where  is a symmetric matrix andUÐ Ñ œ E E 8 ‚ 8B B BX

B − Þ E Ÿ â Ÿ Ÿ‘ - - -8
8 # "  Suppose the eigenvalues of , listed by size, are .  Then

 a)    for all  in the unit sphere  and- -8 "
8�"Ÿ UÐ Ñ Ÿ W ßB B

 b)   for all  in the  of  and the eigenspace for  (that is, forUÐ Ñ œ WB B- -3 3
8�"intersection

 all  in the eigenspace with In particular,B Bll ll œ "Ñ Þ

  the maximum value  of  on  happens at those  the eigenspaceñ UÐ Ñ W-"
8�"B B in

  for  that are also on and-"
8�"W ß

  the minimum value of  on  happens at those  the eigenspaceñ UÐ Ñ W-8
8�"B B in

  for that are also on -8
8�"

 =
  



Proof  Since  is symmetric, there is an orthogonal matrix  such thatE T

   E œ YHY œ Y ÞX

Ô ×Ö ÙÖ Ù
Õ Ø
-

-

-

"

#

8

X

! â !
! â !
! ã ã !
! ! â

Y

Y Y � œ Y and  are both orthogonal so multiplication preserves length that is: if or,X B C 

equivalently , then .  Therefore the change of coordinates C B B C B Cœ Y ll ll œ ll ll œ YX

doesn't change which points on the unit sphere:  if and only if ll ll œ " ll ll œ "ÞB C

 a) For any  in B W8�", we calculate as before that

 UÐ Ñ œ E œ ÐY Ñ YB B B C C œ C CX X X X

Ô × Ô ×Ö Ù Ö ÙÖ Ù Ö Ù
Õ Ø Õ Ø
- -

- -

- -

" "

# #

8 8

! â ! ! â !
! â ! ! â !
! ã ã ! ! ã ã !
! ! â ! ! â

Y Y

   œ œ C � C � â � C ßC CX # # #
" " ## 8 8

Ô ×Ö ÙÖ Ù
Õ Ø
-

-

-

"

#

8

! â !
! â !
! ã ã !
! ! â

- - -  so

 UÐ Ñ Ÿ C � C � â � C œ ÐC � C � â � C Ñ œB - - - - -" " "" # " #
# # # # # #

" " 8 8

 because Similarly for any in ll ll œ "Þ Ÿ UÐ Ñ W ÞC B B-8
8�"

 b) If is in  and  is an eigenvector for , thenB BW8�" 3-

    UÐ Ñ œ E œ œ œ ll ll œ † " œ Þ ñB B B B B B B BX X X #
3 3 3 3 3- - - - -

Example 6   Consider again the quadratic form

  UÐB ß B ß B Ñ œ" # $ B B œX # # #
" # $ " # " $ # $

Ô ×
Õ Ø
" " "
" " "
" " "

B � B � B � #B B � #B B � #B B

where we saw that

E œ œ YHY

� � � !

� � �

!

! ! !
! ! !
! ! $

 

Ô × Ô ×Ö Ù Ö ÙÖ Ù Ö Ù
Õ Ø Õ Ø

Ô ×
Õ Ø

" " " " "

# # #' $
" " " " " #

# ' $ ' ' '
# " " " "
' $ $ $ $

X

È È È È È
È È È È È È

È È È È È
On the unit sphere in , the maximum and minimum values of  are  and .W œ U $ !# $‘



ñ $The eigenspace for the largest eigenvalue, , is a straight line through in the direction of! 

the vector   in two points the two endpoints of a
Ô ×
Õ Ø
"
"
"

.  The eigenspace intersects W �#

diameter of , and  has its maximum value, , at those two points.W U $#

ñ !ß �The eigenspace for the smallest eigenvalue,  is two dimensional a plane through the

origin perpendicular to line that is the other eigenspace. This eigenspace intersects  in aW#

circle (a “great circle” on    has its minimum value, , at all the points lying on thisW ÑÞ U !#

circle.

ñ For any other 's on , we know that .B BW ! > UÐ Ñ > $#

Example 7  Consider the quadratic form in Example 6 and the new system of -coordinates,U U

where  is the basis formed by (the columns of ).U ? ? ?" # $ß ß Y

What is the maximum value of  subject to the   and ?U † œ " † œ !two constraints B B B ?$

The constraint  means that we consider only vectors  on the unit sphere  in .B B B† œ " W# $‘

Since  and  are orthogonal, inner products are preserved as we move back and forthY Y X

between standard coordinates and -coordinates so  if and only ifU � † œ !B ?$

Ò Ó † Ò Ó œ Ò Ó œB ? BU U U$

Ô × Ô × Ô ×
Õ Ø Õ Ø Õ Ø
C ! C
C ! C
C " !

† œ !
" "

# #

$

  which means that , that is, B has C$

coordinate .!

So both constraints together mean that we are considering only 's on the unit sphere withB
C ! W C C$ " #

# coordinate , that is, the 's on the great circle where  intersects the  plane.B

For such an B À the change of coordinates shows that the value of  isB Cœ Y U 

  UÐ Ñ œ ÐC Ñ � C � Ð!Ñ Ÿ C � C œ ÐC � C Ñ œC - - - - - - -" " # $ " "
# # # # # # #

# " " #1 1 2

      since ll ll œ ll ll œB C »Ô ×
Õ Ø»
C
C
!

œ "
"

2

So subject to the constraints  the maximum value of  is  (the largest eigenvalueß U œ $-"

remaining after , the eigenvalue corresponding to is eliminated)axis) is eliminated).-$ ?$

A similar argument shows that the minimum value of  subject to these two constraints is  (theU !
smallest eigenvalue remaining after , the eigenvalue corresponding to is eliminated)axis) is-$ ?$

eliminated).

Explain why  is constantly  everywhere on the circle where  intersects the  plane.U ! W C C#
# $



Example 8   Suppose , where  is symmetric and  symmetric, withUÐ Ñ œ E E & ‚ &B B BX

 eigenvalues    Write  where - - - - -& % $ # "
XŸ Ÿ Ÿ Ÿ Þ E œ Y Y Y

Ô ×Ö ÙÖ ÙÖ ÙÖ Ù
Õ Ø

-

-

-

-

-

"

#

$

%

&

! ! ! !
! ! ! !
! ! ! !
! ! ! !
! ! ! !

is an orthogonal matrix and let be a new orthogonal basis for U ‘œ Ö × Þ? ? ? ? ?" # $ % & &

After substituting we get that  has valueB Cœ Y U 

  UÐ Ñ œ C � C � C � CC - - - -" $" # $
# # # #

# % %  � C-& &
#

Arguing as in Example 7, constraint  = B B B B B ? B ?X œ † œ "ß † †" œ ! œ !, and would5

restrict us to those vectors  on the unit sphere  in  that have  coordinatesB CW% &‘

C œ C œ ! � W" &
%in other words, to the points in the intersection of  with the subspace spanned

by and ? ? ?# $ %ß .  And, mimicking the argument in Example 7, the maximum and minimum

values for  under these constraints will be  and the largest and smallest of the eigenvaluesU Ð- -# %

that remain after  and are eliminated).- -" &


