
Math 2270-1

Notes of 11/25/2019

Announcements

• hw 14 opens today. It’s mostly a review, con-
sisting of old T/F questions.

• this week, discuss parts of chpt 7

• next week, review

• Final Exam, Thursday, 12/12 8:00-10:00 am,
LCB 219

• Additional and optional Q&A session, Wednes-
day, 12/11, 10:30-12:30, LCB 215. HW 14 will
close December 4.
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Chapter 7: Symmetric Matrices

• The main result today is that a (real square)
matrix has an orthogonal similarity trans-
form to diagonal form if and only if it is
symmetric. Getting there will be a little tech-
nical!

• Throughout this chapter let A be a square real
matrix. Unless stated otherwise, the number
of rows and columns is n.

• A square matrix A is symmetric if

A = AT .

This means that

aij = aji

• The entries along the diagonal are arbitrary,
but those off the diagonal occur in pairs.

• The concept of symmetry only applies to square
matrices.
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• Examples

• The set of symmetric n × n matrices forms a
linear space. What is its dimension?
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Review of Eigenvalues and Similarity

• A non-zero vector x is an eigenvector of A
corresponding to the eigenvalue λ if

Ax = λx.

• An eigenvector is determined only up to a
non-zero factor.

• The eigenvalues of A are the roots of the char-
acteristic equation

det(A − λI) = 0.

• A has precisely n eigenvalues, properly count-
ing multiplicity.

• The eigenvalues of A may be complex. If
there are any complex eigenvalues they occur
in conjugate complex pairs.

• The eigenvalues of a symmetric matrix are
real. (see notes of 10/25/19).

• For any symmetric matrix, eigenvectors cor-
responding to distinct eigenvalues are orthog-
onal.

Math 2270-1 Notes of 11/25/2019 page 4

A antisymmetric if AT _A
2



Similarity

• Two matrices A and B are similar if there is
a non-singular matrix P such that

B = P−1AP.

• P is sometimes referred to as a similarity
transform.

• Similar matrices have the same eigenvalues
and the eigenvectors of B are of the form
P−1x where x is an eigenvector of A:

B(P−1x) = (P−1AP )P−1x = P−1Ax = λ(P−1x).

• A matrix A is diagonalizable if it is similar
to a diagonal (but not necessarily real) ma-
trix.

• A is diagonalizable if and only if it has a lin-
early independent set of n eigenvectors.

• Suppose there is such a set, satisfying

Api = λipi, i = 1, . . . , n. (1)

• Then let

P = [p1 p2 . . .pn ] and D =

⎡

⎢

⎢

⎢

⎢

⎣

λ1 0 0 . . . 0
0 λ2 0 . . . 0
0 0 λ3 . . . 0
...

...
...

. . .
...

0 0 0 . . . λn

⎤

⎥

⎥

⎥

⎥

⎦
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• Equation (1) is the column version of the ma-
trix equation

AP = PD

• Hence
D = P−1AP

and so D is similar to A and the similarity
transform P is the matrix of eigenvectors.

• this suggests the following procedure for di-
agonalizing a matrix:

1. Find n linearly independent eigenvectors.

2. Collect those vectors into the matrix P .

3. compute P−1

4. Then
D = P−1AP

is a diagonal matrix with the eigenvalues along
the diagonal.

• Example 3, textbook. The (symmetric) ma-
trix

A =

⎡

⎣

3 −2 4
−2 6 2
4 2 3

⎤

⎦

has the characteristic equation

0 = −λ3 +12λ2−21λ−98 = −(λ−7)2(λ+2)

Thus -2 is a single eigenvalue and 7 is a double
eigenvalue.
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• The standard technique of solving the linear
system

Ax = λx

gives the eigenvectors

v1 =

⎡

⎣

1
0
1

⎤

⎦ and v2 =

⎡

⎣

−1/2
1
0

⎤

⎦

for λ = 7 and

v3 =

⎡

⎣

−1
−1/2

1

⎤

⎦

for λ = −2

• These eigenvectors are linearly independent.
Collecting them into matrix

P =

⎡

⎣

1 −1/2 −1
0 1 −1/2
1 0 1

⎤

⎦

gives the similarity transform

P−1AP =

⎡

⎣

7 0 0
0 7 0
0 0 −2

⎤

⎦

• We saw in chapter 6 that orthogonal matrices
are particularly nice.
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• Two matrices A and B are orthogonally sim-
ilar if there is an orthogonal matrix P such
that

B = P−1AP = PT AP.

• Suppose A has an orthonormal basis of n eigen-
vectors.

• Then we can collect those into an orthogonal
matrix P where

P−1 = PT

• We get D = PT DP and therefore

A = PDPT .

• The eigenvectors v1 and v2 in Example 3 are
linearly independent, but not orthogonal. How-
ever, they span a space of dimension 2, the
eigenspace associated with the eigenvector 7,
and we can c construct an orthogonal basis
of that space by the Gram-Schmidt Process.
We can also normalize v3 to be a unit vector.
This gives the modified orthogonal similarity
transform

Q =

⎡

⎣

1/
√

2 −1
√

18
−2/3

0 4/
√

18 −1/3
1/

√
2 1/

√
18 2/3

⎤

⎦

with

QT AQ =

⎡

⎣

7 0 0
0 7 0
0 0 −2

⎤

⎦

Math 2270-1 Notes of 11/25/2019 page 8



• Returning to the general orthogonal similarity
transform, note that the matrix

A = PDPT

is symmetric. Thus we see that a matrix
that is orthogonally diagonalizable is sym-
metric.

• The converse is also true: Every symmetric
(real) matrix is orthogonally diagonaliz-
able.

• We get Theorem 2. A matrix is orthogonally
diagonalizable if and only if it is symmetric.

• We saw the “only if” part, the “if” part is
trickier. The textbook gives more informa-
tion, referring to a bunch of exercises, but it
does not have a proof.

• However, here is a proof by induction.

• Induction: We show than a statement is true
for n = 1. Then we show that it is true for n
if it is true for n − 1, for all n = 1, 2, 3, . . . .

• There is nothing to show for n = 1. A is
symmetric and P is the 1 × 1 identity.

• So suppose that any symmetric (n−1)×(n−1)
matrix A1 does have an orthogonal similarity
transform to diagonal form:

P−1

1
A1P1 = D1

where P1 is orthogonal, i.e.,

PT
1 P1 = I1
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where I1 is the (n− 1)× (n− 1) identity, and
D1 is (n − 1) × (n − 1) diagonal.

• Now suppose A is symmetric and n×n. Then
it has a real eigenvalue λ1 and corresponding
real eigenvector v1, i.e.,

Av1 = λ1v1.

• Since eigenvectors are determined only up to
a constant factor we may assume that

∥v1∥ = 1.

• We construct an orthogonal n × n matrix

P̄ = [v1 v2 . . . vn ]

• This is always possible. It can be accom-
plished, for example, by rotating the standard
coordinate system so that the first standard
basis vector e1 lines up with v1, or we could
add vectors to {v1} to get a basis of Rn, and
then apply the Gram-Schmidt process.

• Then

AP̄ = [ λ1v1 Av2 . . . Avn ]

and

P̄T AP̄ = [ λ1P̄T v1 P̄T Av2 . . . P̄T Avn ]

= [ λ1e1 P̄T Av2 . . . P̄T Avn ]
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since P̄ is orthogonal.

• Moreover, P̄T AP̄ is symmetric since A is sym-
metric:

(P̄T AP̄ )T = P̄T AT P̄ = P̄T AP̄ .

• Thus P̄T AP̄ has the block structure

Ã = P̄T AP̄ =

[

λ1 0T

0 A1

]

where 0 is the zero vector in IRn−1 and A1 is
(n − 1) × (n − 1) and symmetric.

• By our induction hypothesis A1 has an or-
thogonal similarity transform to diagonal form:

D1 = PT
1 A1P1.

• We now apply a standard trick and embed the
matrix A1 in the n × n identity matrix. This
gives

P̃ =

[

1 0T

0 P1

]

.

• Note that P̃ is an orthogonal matrix!

• Now observe that

P̃T ÃP̃ = P̃T P̄T AP̄ P̃

= (P̄ P̃ )T A(P̄ P̃ )

=

[

λ1 0T

0 D1

]

. (2)
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• This may perhaps be seen more clearly by
multiplying the matrices involved in the form
we use for multiplication:

[

1 0T

0 P1

]

= P̃

Ã =

[

λ1 0T

0 A1

] [

λ1 0T

0 A1P1

]

= AP̃

P̃T =

[

1 0T

0 PT
1

] [

λ1 0
0 PT

1 A1P1

]

=

[

λ1 0T

0 D1

]

• We define
P = P̄ P̃ .

P is the product of two orthogonal matrices
and hence orthogonal:

PT P = (P̄ P̃ )T (P̄ P̃ ) = P̃T P̄T P̄ P̃ = P̃T P̄ = I.

• The matrix

D =

[

λ1 0T

0 D1

]

is diagonal, and so we get the required orthog-
onal transform

PT AP = D.

• End of Proof!
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• Recall that a matrix may be defective, i.e.,
it may not have a complete set of n linearly
independent eigenvectors.

• However, the existence of an orthogonal sim-
ilarity transform implies that symmetric ma-
trices are never defective.

• More precisely:

Spectral Theorem for Symmetric Ma-
trices An n × n symmetric matrix A has the
following properties:

a. A has n real eigenvalues, counting multiplici-
ties.

b. The dimension of the eigenspace λ equals the
multiplicity of λ as a root of the characteristic
equation.

c. The eigenspaces are mutually orthogonal, in
the sense that eigenvectors corresponding to
distinct eigenvalues are orthogonal.

d. A is orthogonally diagonalizable.

!
Put a little more simply: As far as the

eigenvalue problem, symmetric matrices are
as nice as can be.
!

We don’t know enough yet to appreciate
it, but the corresponding statement for linear
system is that orthogonal matrices are as nice
as can be.
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