Math 2270-1

Notes of 11/27/2019

The Singular Value Decomposition.

What Is It?.

Suppose we are given an m xn matrix A, where, usually,

The Singular Value Decomposition of A is

where

e U is m x m orthogonal, i.e., U=! =UT,

e V is n x n orthogonal, i.e., V-1 = V7T and

m > n.

A=Uxv7T

e X is m x n diagonal. Specifically,

where

_01 0 “e 0 1
0 092 0
0O O On
0 0 0

0 0 0 |

oL >09>...>0,>0.
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Note that ¥ is a matrix! The capital Greek letter X in
this context has nothing to do with the summation sym-
bol~'~. The o; are the singular values of A. The columns
of U and V are the left and right, respectively, singular
vectors of A.

e Some insight may be gained, and some of the mystery
can perhaps be lifted, by observing that the right sin-
gular vectors of A are the eigenvectors of AT A, and the
singular values are the square roots of the correspond-
ing eigenvalues of AT A.

PTo see this let v; be the j-th column of V' and note
that

AT = vty (5)
Letting
o? 0 0
0 o2 ... 0
s=x's=|. 7 . (6)
0O 0 ... o2

and e; be the j-th unit vector. We obtain

AT Av; = VET UTU B VT,

=TI :“ej
= VT Se; (7)
= VS@j
= sz-vj

which is what we want to show.

—1= T first learned about the singular value decomposition
in an excellent talk by Cleve Moler that I understood only
in retrospect. At the time of that first exposure the talk
was utterly wasted on me because the whole time I kept
thinking What is he summing there? However, the nota-

tion A = UX VT is well established.
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Existence.

Theorem. Every matrix has a singular value decompo-
sition.

The following proof is taken (with little modification
but a little elaboration) from Golub/van Loan, p. 76. Let
AeR™" and let z € R" and y € R™ be unit 2-norm
vectors that satisfy

Az = oy with o= |42 (8)

There exist matrices Vo € R™*™ ™V and U, € R™*(m~1
such that
V=[zV] and U=[yU] 9)

are orthogonal.

It is not hard to show that UT AV has the following

structure:

o U)T

UTAV = [o B ] —: A (10)

Since

> (o? +wlw)? (11)

||A1||§ (0'2 +wTw) Z HAl [Z)]
2

we have, after dividing by (02 + wTw), that
[AL]]3 > (0% +w"w). (12)

But
o® = ||Al3 = [ A1]3 > 0* + w'w, (13)

and so we must have w = 0. An obvious induction argu-
ment completes the proof of the theorem.

Exercise 1. Fill in the details of the above proof.
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Why It Is Important.

The Singular Value Decomposition (SVD) is the most
versatile and powerful matrix factorization in numerical
linear algebra. It’s expensive to compute, but if all else
fails the SVD has the best chance of succeeding.

Most applications of the SVD consist of reducing a
problem involving A into one involving Y. Note that since

> =UrAV (14)

3} is obtained from A by multiplying with two orthogonal
matrices, and multiplying with an orthogonal matrix does
not amplify errors. So once we know U and V then X can
be obtained from A in a process that is as well conditioned
as it can be.

The Singular Value Decomposition (of square matrices)
was first discovered independently by Beltrami in 1873 and
Jordan in 1874.

References.

The SVD is discussed in many textbooks on numerical
analysis, or numerical linear algebra. The most compre-
hensive discussion is in the authoritative monograph

e Gene H. Golub and Charles F. van Loan, Matrix Com-
putations, 4th ed., The Johns Hopkins University Press,
2013, ISBN 10: 1-4214-0794-9.

However, the most easily understood first explanation
is in

e David Kahaner, Cleve Moler and Stephen Nash, Nu-
merical Methods and Software, Prentice Hall, 1989,
ISBN 0-13-627258-4.

The following exercises can help you understand the
SVD more thoroughly.

Exercise 2. FExplore how the discussion in these notes
has to be modified if m < n. One source of problems
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with underdetermined systems are constrained minimiza-
tion problems. In that context one is often interested in
the null space of a matrix, i.e., the space of all vectors that
satisfy Az = 0. See how to use the SVD to find the null
space of A.

Exercise 3. Compute the singular value decomposition
in the case that m =1 orn = 1.

Exercise 4. Show that every real m X n matrix has a
singular value decomposition.

Exercise 5. Show that the condition number of AT A is
the square of the condition number of A. Comment on
the suitability of solving Least Squares Problems via the
Normal Equations

AT Az = ATb. (15)

Exercise 6. Show that the columns of U are the eigen-
vectors of AAT. There are m singular values, but n > m
eigenvalues of AAT, so what are the eigenvalues of AAT?

Exercise 7. Ask yourself what happens when A is sym-
metric. What if it is positive definite?

Exercise 8. Investigate the use of the SVD for the solu-
tion of eigenvalue problems.

Exercise 9. Explore the applicability of the SVD for
sparse matrices A.

Exercise 10. Using the SVD, express the solution of the
Least Squares problem ||Ax — b||s = min in the form x =
ATb where AT is given in terms of A. AT is known as the
generalized inverse of A.

Exercise 11. Show that

TA
o1 = max B ey (16)
ye R™ llyllzllzll2
x € R"
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Computing the SVD.

Since the computation of the SVD amounts to the so-
lution of an eigenvalue problem it follows that in general
the SVD cannot be computed exactly in a finite number
of steps, and so intrinsically one has to use some sort of
iteration. The actual computation is involved and sophis-
ticated, for details consult the above mentioned reference
by Golub and van Loan. The emphasis in these notes is
on what you can actually do with the SVD, once you have
it=2~. Thus the remainder of these notes lists a sequence
of applications of the Singular Value Decomposition.

For practical purposes, the SVD can be computed in
matlab with a statement like

[U,S,V] = svd(4)

Some Applications.

Note that the following list in no way is meant to be
complete.

Rank Determination.

The rank of a matrix is the maximum number of lin-
early independent rows or columns. In principle one can
compute it by carrying out Gaussian Elimination until it
becomes impossible to find a non-zero pivot element by
row and column pivoting. The problem of that approach
is that because of round-off errors it is extremely difficult
to decide when a number is zero. Numbers that should be
zero usually aren’t because of inexact arithmetic. Since U
and V are non-singular the rank of A equals the rank of X2,
and the rank of X equals the number of non-zero singular

—2= Software to compute the SVD is available, for example,
at

http://www.netlib.org/
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values. In this context, a singular values o; is considered
zero if o
1
— < T 17
o (17)
where 7 is a specified tolerance that usually is a small
multiple of the round-off unit=>~. Another approach is
based on looking at the whole set of singular values. Often
they decrease gradually and then there is a pronounced
jump to very small singular values. If the last singular
value before the jump is o, then r is the rank of A (and
Y).

Throughout the remainder of this note we will assume
that

01>209>...20,>0,41=0p42=...=0,=0 (18)

and hence
rankA = rank® = r. (19)

It is of course possible that » = n, in which case A has full
rank.

Computing the Determinant of a Square
Matrix. The determinant of an orthogonal matrix is
positive or negative 1. The determinant of a square di-
agonal matrix is the product of its diagonal entries. The
determinant of the product of two matrices is the product
of the individual determinants. Thus for a square ma-
trix A its determinant is plus or minus the product of the
singular values:

det A =40 X 09 X ... X 0p,. (20)

—3~ The round off unit ¢, also called the machine epsilon,
is the smallest number that can be represented on a com-
puter such that the system recognizes 1+ € as being larger
than 1. On many systems, including our Unix systems, €
equals approximately 2 x 10716,
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Computing the Condition Number of a
Matrix.

Multiplying with an orthogonal matrix does not change
the 2-norm of a matrix. The two norm of A is therefore
the two norm of ¥ which equals 0. If A is square and
invertible, then its inverse is given by

A"t =vyTUT. (21)

The matrix ¥~! is diagonal and has the reciprocals of the
singular values along the diagonal. Its 2-norm (and that

of A71) is 1/0,. Hence,
- 01
Al A~ = 2. (22)

n

The right hand side of equation (22) makes sense even for
rectangular matrices and is usually taken as the definition
of the condition number of A even if A is not square.
This turns out to be useful beyond being a mere formal
generalization.

Note that in the process of computing the condition
number we also obtained

[All2 = o1 (23)
for general matrices A, and
1
A =— 24
A7) = - 1)

for non-singular square matrices A.

Solving a Linear System.

Let’s consider the linear system
Az =b (25)

and ask if it has any solutions, and if it does, how many,
and what they are. All of these questions can be answered
via the SVD. Recalling (2) the system (25) turns into

Az =UxVTz =0 (26)

Math 2270-1 Notes of 11/27/2019 page 8



Multiplying with U7 gives
Yz=c (27)

where

z=VTz and c=UTb. (28)
This is a diagonal linear system that can be analyzed
easily. Recalling (18) we distinguish three cases:

1. r =n and

Cnil=...=¢m =0. (29)
There is a unique solution
Ci .
zi=—, 1=1,....n 30
£ (30

Note that this includes the case m = n where the con-
dition (29) is vacuous.

2. r<nandcry1 =...=cy =0. In that case

C; .
i = —, =1,..., 31
z p i r (31)

and z,41 through z,, are arbitrary. There are infinitely

many solutions and they form an n — r dimensional
affine space™*~.

3. r < nand ¢; # 0 for some ¢ > r. In that case the
system is inconsistent and there is no solution. Note
that this includes the case that m = n (in which case
of course the rank r» must be less than n for the system
to have no solution).

Note that once we have z it is easy to compute

r=Vz (32).

—4= An affine space S is a set of vectors s+v where v resides
in an ordinary vector space. An example would be a line
in the plane, or a plane in three dimensional space. If the
line passes through the origin it’s a linear subspace, and
whether or not it does, it’s an affine subspace of the plane.
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Also note that all the required transformations involve
multiplications with orthogonal matrices, which does not
amplify errors.

Solving Least Squares Problems.

Consider the standard Least Squares Problem
|Az — b||2 = min. (33)

The standard approach to this problem is via the QR fac-
torization which we discussed in class. That approach fails
if A has a rank less than n. The SVD still works in this
case, and once we have it it can of course also be applied
in the full rank case. Remembering once again that mul-
tiplication with an orthogonal matrix does not alter the
2-norm of a vector, and proceeding similarly as for linear
systems we obtain

| Az — b3 = U (Az —D)|I3
= [UTAVVT2 — UTb|3

= ||z — cll3 (34)
= Z(azzz — Ci>2 + Z CZZ.
=1 t=r+1

where ¢ and z are defined in (28) and r is defined in (18).
There is nothing we can do about the second sum in (34).
However, we can render the first sum zero by picking z;
as before in (31). If » < n then we can pick z,41 through
zn arbitrarily. In that case the solution x = Vz of the
Least Squares problem is not unique, but the value of Ax
is. The usual choice of z in that case is

Zpil = Zpao = ...= 2, =0 (35)

which gives among all solutions the solution z (and hence
x) that itself has the smallest 2-norm.

Data Compression.
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It’s an easy exercise to see that
n
A=UsVT =) o] (36)
i=1

where the u; and v; are the columns of U and V', respec-
tively. Suppose now that A represents an image, or some
other kind of data. For example, its entries might be num-
bers between 0 and 1 that indicate shades of gray. One
way to approximate A by fewer than mn numbers (and
thus compress the image or data) would be to use only
the first few terms in the sum on the right of (36), and
of course store only the corresponding few left and right
singular vectors rather than an m x n array. The book
by Kahaner, Moler and Nash referenced above has an im-
pressive illustration of that technique.
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