
Math 2270-1

Notes of 11/04/19

• Today and tomorrow: review

• Wednesday: Exam 3 on Chapters 4 and 5

�
The following list is neither self contained nor is

it complete. Rather, the individual items should stir
your memory about facts, concepts, and connections.
If some do not then it is a good idea to review the
associated material!

Chapter 4: Vector Spaces

• Definition: A vector space−1− is a nonempty
set V of objects, called vectors, on which are de-
fined two operations, called addition and multi-
plication by scalars (real numbers), subject
to the ten axioms (or rules) listed below. The ax-
ioms must hold for all vectors u, v, and w in V ,
and for all scalars c and d.

1. The sum of u and v, denoted by u+v, is in V .

2. u + v = v + u.

3. (u + v) + w = u + (v + w).

−1− Also called a linear space
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4. There is a zero vector 0 in V such that

u + 0 = u. (1)

5. For each u in V , there is a vector −u in V such
that u + (−u) = 0.

6. The scalar multiple of u by c, denoted by cu, is in
V .

7. c(u + v) = cu + cv.

8. (c + d)u = cu + du.

9. c(du) = (cd)u.

10. 1u = u.

• A subspace of a vector space V is a non-empty
subset of V that is closed under addition and scalar
multiplication.

�
every subspace is a vector space itself.

• Examples of vector spaces:

− The primary examples of vector spaces are of
course IRn and subspaces of IRn.

− The column space of a matrix.

− The null space of a matrix.

− The column space of AT (called the row space
of A).

− The null space of AT , i.e., the set of all x such
that

AT x = 0. (2)
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− The set of all quadratic polynomials.

− The set of all polynomials of degree n

− The set of all polynomials.

− The set of all real valued functions defined on
some set (domain).

− The set of all functions that are continuous on
[a, b], usually denoted by C0[a, b] or C[a, b].

− The set of all functions that are square inte-
grable on IR:

V =

{

f :

∫ ∞

−∞

f2(x)dx < ∞

}

. (3)

− The set of all solutions of the differential equa-
tion

y′′ = k2y (4)

− The set of all m × n matrices.

− The set of all upper triangular n × n matrices.

− The set of all diagonal matrices.

− The set of all symmetric n × n matrices (those
that satisfy A = AT .)

− The set of all sequences

x0, x1, x2, x3, . . . (5)

− The set of all sequences x0, x1, x2, . . . that sat-
isfy the infinitely many equations

xn+2 − xn+1 − xn = 0, n = 0, 1, 2, . . . . (6)
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− The set of all convergent sequences.

− The range of a linear transformation

− The null space of a linear transformation

�
Here are some examples of sets that are not

vector spaces:

− A line or plane in IRn not containing the origin.

− The set of all triangular matrices.

− The set of all non-singular (square) matrices

− The set of all singular (square) matrices.

− The set of all sequences x0, x1, x2, . . . that sat-
isfy the infinitely many equations

xn+2 − xn+1 − xn = 1, n = 0, 1, 2, . . . . (7)

− The set of all divergent sequences.

− The solution set of a linear system Ax = b (un-
less b = 0).

• A linear combination of a (finite) set of vectors
is obtained by multiplying each vector with some
scalar and adding up the products.

• The span of a set of vectors is the set of all linear
combinations of those vectors.

• A spanning set of a vector space is a subset of
the vector space whose span is the space.

• linear independence of a set of vectors means
that the only way to get the zero vector as a linear
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combination of the vectors is by picking all coeffi-
cients equal to zero.

• A basis of a vector space is a linearly indepen-
dent spanning set of the space.

• All bases of a specific vector space have the same
number of elements. That number is the dimen-
sion of the vector space.

• We saw that this is true by showing that if B is a
basis with k elements than any set of k elements is
linearly dependent. To do that we expressed every
vector in the larger set in terms of the basis, and
obtained a homogeneous rectangular matrix prob-
lem that was certain to have a non-trivial solution.

• Suppose
V = {b1,b2, . . . ,bn} (8)

is a basis of a vector space V and

x =
n
∑

i=1

αibi (9)

is a vector in V . Then the vector

[x]V =









α1

α2

...
αn









(10)

is the coordinate vector of x with respect to
the basis V.

Math 2270-1 Notes of 11/04/19 page 5



• Two vector spaces V and W are isomorphic if
there is a linear transformation from V to W that
is one-to-one and onto.

• Two isomorphic vector spaces have the same struc-
ture. Essentially they are the same. They differ
only in notation or interpretation. As my linear
algebra teacher said long ago, one space is painted
green, the other is painted red.

• An isomorphism is invertible!

• Given a basis V = {v1,v2, . . . ,vn} of V and a basis
W = {w1,w2, . . . ,wn} of W an isomorphism C
can be defined by

C

(

n
∑

i=1

αivi

)

=
n
∑

i=1

αiwi. (11)

• This is equivalent to saying

C(vi) = wi (12)

and requiring C to be linear.

• Another way to think about this is that you map
a vector v ∈ V to a vector w ∈ W that has the
same coefficient vector with respect to W as v has
with respect to V .

• Two finite-dimensional vector spaces are isomor-
phic if and only if they have the same dimension.
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�
In particular, all n-dimensional vector spaces

are isomorphic to IRn.

�
Thus in a sense the only finite dimensional

vector spaces are IRn for n = 1, 2, 3, . . ..

• We can convert between different bases of the same
space. Suppose we have three bases of IRn.

I = {e1, e2, . . . , en}

B = {b1,b2, . . . ,bn}

C = {c1, c2, . . . , cn}

(13)

• I is the standard basis.

• As usual, we associate the matrices

B = [b1 b2 . . . bn ]

and

C = [ c1 c2 . . . cn ]

(14)

with the bases B and C.

• B and C are square and invertible.

• A vector

x =









x1

x2

...
xn









(15)
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can be expressed variously as

x = [x]I = B[x]B = C[x]c (16)

• It follows that

[x]B = B−1x and [x]C = C−1x. (17)

• We can convert between the bases B and C by the
formulas

[x]B = B−1C[x]C and [x]C = C−1B[x]B. (18)

• Suppose A is an m × n matrix. It defines a linear
transformation

y = Ax (19)

from IRn to IRm. Suppose we want to express the
same linear transform in terms of a basis

B = {b1,b2, . . . ,bn} (20)

of IRn and a basis

C = {c1, c2, . . . , cm} (21)

of IRm.

• In other words, we want to find a matrix T such
that

[y]C = T [x]B (22)
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• The situation is illustrated in this “commuting di-
agram”:

x −→ Ax
Bx IRn −→ IRm x

x





x









y





y

x IRn −→ IRm C−1x
x −→ Tx

(23)

• start in the lower left corner. Move to the lower
right corner either by going directly to the right, or
in three steps by going up, right, and then down.
We want T to be such that in either way we get to
the same vector.

• Clearly,
T = C−1AB. (24)

• By the same token,

A = CTB−1. (25)

• check the dimensions.�
In the special case that m = n and B = C we

get that
T = B−1AB. (26)
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• In this case A and B are said to be similar, and the
formula (or the matrix B) is called a similarity
transform.

6. Eigenvalues and Eigenvectors

• An eigenvector of a square (n×n) matrix A is a
non-zero vector x such that

Ax = λx (27)

for some scalar λ. λ is called the eigenvalue of A
corresponding to the eigenvector x. x is an eigen-
vector corresponding to the eigenvalue λ.

• The pair (λ,x) is sometimes called an eigenpair
of A.�

Note than any non-zero scalar multiple of
an eigenvector is also an eigenvector, with the same
eigenvalue.

�
the main difference between linear systems and

eigenvalue problems is that eigenvalue problems are
nonlinear!

• More insight can be gained by writing

Ax = λx (28)

as
Ax − λx = (A − λI)x = 0. (29)
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• Any eigenvector is a non-trivial solution of the ho-
mogeneous linear system

(A − λI)x = 0. (30)

• Every eigenvector is in the nullspace of A − λI.

• Every non-zero vector in the nullspace of A − λI
is an eigenvector of A.

• A square homogeneous linear system has a non-
trivial solution if and only if the coefficient matrix
is singular.

�
thus λ is an eigenvalue of A if and only if A−λI

is singular.

�
Upshot: we have one more characterization of

singularity. A square matrix A is singular if and only
if 0 is an eigenvalue of A. It is invertible if and only
if all eigenvalues of A are non-zero.

• Suppose xi, i = 1, . . . , m are eigenvectors corre-
sponding to the same eigenvalue λ. Then any
(non-zero) linear combination of the eigenvectors
is also an eigenvector:

A

m
∑

i=1

αixi =
n
∑

i=1

αiAxi =
n
∑

i=1

αiλxi = λ

n
∑

i=1

αixi.

(31)

• Thus, if we add the zero vector to the set of eigen-
vectors corresponding to a specific eigenvalue, that
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set is a linear space, the nullspace of A−λI. That
space is also called the eigenspace of A corre-
sponding to λ.

• Important example: The eigenvalues of a trian-
gular matrix are the diagonal entries, because
if A is triangular and λ is an eigenvalue then A−λI
is a triangular matrix with at least one zero entry
on the diagonal. It is thus singular.

�
Row operations do not preserve eigenvalues or

eigenvectors!

• A matrix is singular if and only if its determinant
is zero. Thus we get the key result:

λ is an e.v. ⇐⇒ det(A − λI) = 0. (32)

• The equation

det(A − λI) = 0. (33)

is the characteristic equation of A.

• The function f(λ) = |A − λI| is a polynomial of
degree n with leading coefficient (−1)n

• We can see this using a cofactor expansion or the
formula

detA =
∑

σ

sign(σ)
n
∏

i=1

aiσi
(34)
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where the sum goes over all n! permutations of the
set {1, 2, . . . , n} and the large symbol π indicates
the product of n factors, one from each row i, and
the column σi.

• The polynomial

p(λ) = det(A − λI) (35)

is the characteristic polynomial of A

�
The eigenvalues of A are the roots of the

characteristic polynomial.

• This means

1. There are precisely n of them, properly counting
multiplicity.

2. They may be repeated.

3. They may be complex.

4. If there are complex eigenvalues then they occur
in conjugate complex pairs.

• The natural way to compute eigenvalues and eigen-
vectors by hand proceeds in two steps:

1. Compute the characteristic polynomial and find its
roots.

2. For each eigenvalue λ find the nullspace of A−λI.
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• This works well only for small matrices with ex-
actly known entries.

• However, the opposite process, computing roots
of polynomials by computing the eigenvalues of a
suitable matrix works very well.

• For every polynomial p of degree n with leading
term (−1)n there exists a matrix A whose charac-
teristic polynomial is p. Check:

det

























αn−1 αn−2 · · · α1 α0

1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0













− λI













= (−1)n



λn −

n−1
∑

j=0

αjλ
j



 .

(36)

• Central in eigenvalue calculations is the concept of
similarity.

• Definition: Two matrices A and B are similar
it there is a non-singular matrix P such that

B = P−1AP. (37)

• Similar matrices have the same eigenvalues, and
their eigenvectors are related in a straightforward
way. To see this suppose that

Ax = λx (38)
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and note that

B(P−1x) = P−1APP−1x = P−1λx = λ(P−1x).
(39)

• In other words, the eigenvectors of B are those of
A, multiplied with P−1.

• Another way to see that similar matrices have the
same eigenvalues is to observe that their charac-
teristic polynomials are the same. Using the mul-
tiplicative property of determinants and the fact
that the determinant of the inverse is the recipro-
cal of the determinant of the original matrix we
see

|B − λI| = |P−1AP − λP−1IP |

= |P−1(A − λI)P |

= |P−1||A − λI||P |

= |A − λI|

(40)

• Definition: A matrix is diagonalizable if it is
similar to a diagonal matrix.

• In other words, A is diagonalizable if there exists
a diagonal matrix D and a non-singular matrix P
such that

D = P−1AP. (41)

• This equation can be rewritten as

AP = PD. (42)
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• Suppose
P = [v1 v2 . . . vn ] (43)

and

D =













λ1 0 0 . . . 0
0 λ2 0 . . . 0
0 0 λ3 . . . 0
...

...
...

. . .
...

0 0 0 . . . λn













(44)

• Note that the equation for the i-th column in (42)
is precisely the eigenvector equation

Avi = λivi. (45)

�
A matrix is diagonalizable if and only if it

has n linearly independent eigenvectors. The sim-
ilarity transform to diagonal form is the matrix of
eigenvectors and the similar diagonal matrix has the
eigenvalues along the diagonal.

• A matrix that is not diagonalizable is called de-
fective.

• A matrix is not defective if and only if it has a set
of n linearly independent eigenvectors.
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�
Invertibility is unrelated to Diagonalizability.

singular invertible

defective:

[

0 1
0 0

] [

1 1
0 1

]

diagonalizable:

[

0 0
0 0

] [

1 0
0 1

]

(46)

• It is sometimes useful to be able to construct a ma-
trix with given eigenvalues and eigenvectors. Note
that

D = P−1AP (47)

is equivalent to

A = PDP−1. (48)

Suppose you want to construct a matrix A with
given eigenvalues and given eigenvectors. Proceed
as follows:

1. Collect the eigenvectors into the matrix P , and the
eigenvalues into the matrix D, as before.

2. Compute P−1.

3. Compute
A = PDP−1. (49)
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• It is not always possible to diagonalize a matrix.
However, for all matrices A there exists a similar-
ity transform to its Jordan Canonical Form−2−

(named after Camille Jordan, 1838-1922).

• The JCF is a block diagonal matrix

P−1AP =









J1 0 . . . 0
0 J2 . . . 0
...

...
. . .

...
0 0 . . . Jk









(50)

where each diagonal block is of the form

Ji =

















λi 1 0 . . . 0 0
0 λi 1 . . . 0 0
0 0 λi . . . 0 0
...

...
. . .

...
...

0 0 0 . . . λi 1
0 0 0 . . . 0 λi

















(51)

• Apart from reordering the diagonal blocks the JCF
is unique.

• Each Jordan block Ji corresponds to one eigenvec-
tor with eigenvalue λi.

• A matrix is diagonalizable if and only if all of its
Jordan blocks are 1 × 1.

−2− The textbook mentions the Jordan Canonical Form
in a footnote on page 294.
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• The algebraic multiplicity of an eigenvalue is its
order as a root of the characteristic polynomial.
Its geometric multiplicity is the dimension of
its eigenspace.

• Here is an example. Suppose the Jordan form of a
matrix is given by

J =































2 1 . . . . . . . .

. 2 . . . . . . . .

. . 2 . . . . . . .

. . . 3 1 . . . . .

. . . . 3 1 . . . .

. . . . . 3 . . . .

. . . . . . 3 . . .

. . . . . . . 4 . .

. . . . . . . . 4 .

. . . . . . . . . 5































(52)

• Entries indicated by dots are zero.

• The characteristic polynomial of this matrix is

p(λ) = |J − λI| = (2− λ)3(3− λ)4(4− λ)2(5− λ).
(53)

The number 2 is an eigenvalue of algebraic mul-
tiplicity 3 and geometric multiplicity 2, 3 is an
eigenvalue of algebraic multiplicity 3 and geomet-
ric multiplicity 2, 4 is an eigenvalue of algebraic
and geometric multiplicity 2, and 5 is an eigenvalue
of algebraic and geometric multiplicity 1. The di-
mension of the space spanned by all eigenvectors
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is the sum of the geometric multiplicities which is
7. The matrix is defective.

• A set of eigenvectors corresponding to distinct eigen-
values is linearly independent. (The word “dis-
tinct” means that no two of the eigenvalues are
equal.)

• Recall that a matrix is diagonalizable if it has a
set of n linearly independent eigenvectors.

• Thus a matrix with distinct eigenvalues is diago-
nalizable.�

This implies, for example, that the JCF can be
computed only in exact arithmetic.

• A non-diagonalizable matrix must have multiple
eigenvalues.

�
The most important thing to know about com-

plex eigenvalues is that symmetric real matrices
don’t have any! The textbook addresses this issue
in problem 24 on page 303 (and later in chapter 7).

• But the argument is quite simple.

• For any matrix A or vector x let

AH = ĀT and xH = x̄T (54)

where the bar denotes conjugate complex.
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• A complex matrix A is Hermitian−3− if

A = ĀT . (55)

• We will show that the eigenvalues of a Hermitian
matrix are real.�

Note that symmetric real matrices are special
cases of Hermitian matrices.

• Suppose
Ax = λx (56)

where A = AH , and A, λ, and x are all possibly
complex. Taking the conjugate complex on both
sides turns this into

xHAH = xHA = λ̄xH . (57)

Left multiplying with xH in (56) and right multi-
plying with x in (57) gives

xHAx = λxHx and xHAx = λ̄xHx. (58)

Thus
λxHx = λ̄xHx. (59)

This implies that λ = λ̄, i.e., λ is real.

−3− named after Charles Hermite, 1822–1901.
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• Gershgorin Theorem. Suppose A is an n×
n matrix, and λ is one of its eigenvalues. Then, for
some i ∈ {1, 2, . . . , n}

|aii − λ| ≤
∑

j 6=i

|aij|. (60)

• In other words, every eigenvalue lies in some circle
whose center is a diagonal entry of A, and whose
radius equals the sum of the absolute values of the
off-diagonal entries in that row.

• Those circles are referred to as the Gershgorin
Circles.

• To see this suppose x is an eigenvector of the n×n
matrix A, with corresponding eigenvalue λ. Thus

Ax = λx. (61)

• Since an eigenvector is determined only up to a
non-zero factor we may assume that x is normal-
ized such that

max
j=1,...,n

|xj | = xi = 1 (62)

for some i in {1, 2, . . . , n}. This fixes i. If there are
several such indices i we pick any particular one of
them.

• The i-th component of the vector equation (62) is

n
∑

j=1

aijxj = λxi = λ. (63)
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• Subtracting aiixi = aii on both sides gives the
equation

λ − aii =
∑

j 6=i

aijxj (64)

• Taking absolute values on both sides, applying the
triangle inequality, and observing that |xj | ≤ 1 for
all j shows that λ lies in the Gershgorin Circle
centered at xi:

|λ − aii| =

∣

∣

∣

∣

∣

∣

∑

j 6=i

aijxj

∣

∣

∣

∣

∣

∣

≤
∑

j 6=i

|aijxj |

=
∑

j 6=i

|aij ||xj |

≤
∑

j 6=i

|aij |

(65)

�
It’s not true in general that every Gershgorin

Circle contains an eigenvalue.

�
On the other hand, it is true that any union of k

Gershgorin Circles that does not overlap with any of
the remaining Gershgorin Circles contains precisely k
eigenvalues, counting multiplicity.
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