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7.2 Quadratic Forms m { &gw% o f ]
Positive Definiteness
e Definition: A quadratic form on IR" is a
function ) defined on IR" whose value at a
vector x in IR" can be computed by an ex-
pression of the form
Q(x) = xT Ax
where A is an n X n symmetric matrix. The
matrix A is called\the matri the quadratic

form.

e In the case of n = 1 a quadratic form is a
function of the form

Q(z) = ax?

e In terms of the entries of A and x the quadratic
form is given by

Q(x) = xT Ax = i i Qi T;T5.

. i=1 j=1
Il = xTIs
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e Example la. Suppose

a=lo sl ]
[ >t 2=,
Qx) = gx, + 3%

e Example 1b. Suppose
3 -2
e

/A t 7)( 2

R(x) = Ix -Crx-25F (T

2
= ZX:Z'L(’(,‘(? € 7*7/
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e Example 2. Suppose for x in R? we have
Q(x) = 5% + 325 + 223 — 1179 + ST2T3.
What is the matrix of this quadratic form?
y 5k o]

1 3 4
O ‘/'L_J
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Quadratic Forms and Eigenvalues

e We know that every symmetric matrix has
an orthogonal similarity transform to diago-
nal form:

D =PTAP (1)

where D is a diagonal matrix with the eigen-
values along the diagonal, and P is an or-
thogonal matrix whose columns are the cor-
responding eigenvectors of A.

e The equation (1) can be rewritten as

A= PDPT.

e Thus
xTAx =xT'PDPTx =y Dy
where

y = PTx or x = Py.

e Thus any quadratic form can be written as a
quadratic form in terms of the coordinate vec-
tor of x with respect to the orthogonal basis
of eigenvectors. The matrix of that quadratic
form is the diagonal matrix of eigenvalues.
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e This is the contents of what the textbook calls
The Principal Axes Theorem. Let A be
an n X n symmetric matrix. Then there is an
orthogonal change of variables, x = Py, that
transforms the quadratic form into a quadratic
form

y' Dy
with no cross product terms.

e Note that saying “with not cross product terms”
is equivalent to saying that D is diagonal.
We've seen of course, that P is the matrix
of eigenvectors, and D is the diagonal matrix
of eigenvalues.

Positive Definiteness

e We come now to a key definition:

e A quadratic form Q = x? Ax, and its matrix
A, is

a. positive definite if x’ Ax > 0 for all x # 0.

b. negative definite if x’ Ax < 0 for all x # 0.

c. indefinite if x* Ax assumes both positive and
negative values.

d. positive semidefinite if x* Ax > 0 for all x.

e. negative semidefinite if x” Ax < 0 for all
X.
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e Note that if D is diagonal, with the 77 entry
being A;, then

x!'Dx = Z )\iix?, = ZTA P
=1

e Thus, by the principal axes theorem we can
think of these concepts in terms of the eigen-
values of A.

e A quadratic form Q = x! Ax, and its matrix
A, is

a. positive definite if Ll ev. >0
b. negative definite if MU ¢e-V. & O
c. indefinite if Some V\&@(N{’;W ol SOMC POS; {"‘(/é
d. positive semidefinite if aa e.v. 2
£ 0

e. negative semidefinite if all e. U
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e Examples:

-4 -1 -1 —1-
1 4 -1 -1 /o.a(,
1 -1 4 -1

1 -1 -1 4

oA:BTBWhereB:m-xn.
— T /
4':(1375>' BB =A
x T4 x =><T/?T8,v - ‘/T‘Iza V= b

pvsvd
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e We now come to the reason why positive def-
inite matrices are important:

@ Positive Definite Matrices occur when

minimizing scalar valued functions.

e To build up to understanding this fact recall
a little bit of Calculus.

e Suppose we want to find extreme values of a
function f : R — IR.

e We know that extreme values may occur at
boundary points of intervals, singular points
where the derivative does not exist, and sta-
tionary points where the derivative is zero.

In the remainder of these notes we ig-
nore singular and boundary points and focus on
stationary points.

e Thus, in order to have an extreme value at &
we must have that  is stationary, i.e.,

f'(@) =0.

e If 2 is in fact stationary, then we have
— a minimum value if f”(z) > 0,

— a maximum value if f”(z) <0

o If f”(x) = 0 the second derivative test is in-
conclusive and we may have a minimum, a
maximum, or a saddle point.
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e in Calc IIT we considered scalar valued func-
tions of a vector variable. Suppose

f:R" — R.

e Then the gradient of f is the vector of first
order partial derivatives

e The Hessian of f is the symmetric (!) matrix
of second order partial derivatives:

- 9 9> 9> 9> .

8:1;183:1 f 8£E1 8$2 f 8%18$3 f 8:E1 8$n f
9> 9> 9> 9>

Ox20x1 f Ox20x2 f Ox20x3 f 0x20x, f
ok Pk Pk ok

2p _ | Dmawrd  maows)  Bmowsd 0 Bwsoen

Vof =

9> 9> 9> 9>

0x,0x1 f Ox 02 f Ox,,0x3 f T Oxn 0Ty, f

e In Calc IIT we learned that in order for f(%)
to be an extreme value we must have that

V(%) = 0.
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e We did have a second derivative test of sorts,
but only for the special case that n = 2. Specif-
ically, let

9% f 9% f f \*\ .
b= (83318331 8 85(328562 N (85618332) (X)

Supposing that the gradient is zero, we know
that f(x) is a local maximum value if D > 0

and affafml > (0, and it is a local minimum if
D > 0 and O°f < 0. If D <0 then xis a

8$18$1
saddle point. If D = 0 the second derivative

test is inconclusive.

e That’s pretty contrived, and its scope is ex-
tremely limited to n = 2.

e There is a much more general and compelling
result in terms of the definiteness of the Hes-
sian!
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e To build up to the vector case, let’s first derive
the scalar case.

e Remember the beginning of the Taylor Series
of f about the point Z:

~low ovdey termse dowivate Llfs’éfl/‘
OV‘dW -(—W

zzé(z/ Fer smal( z#+0

F[z\*,p = viecttee—

we cap (V1CrEXX W’

decreca s€ (A f"( )
7 1
]L’[;‘)-,o Fexr» 0
{‘(H’})zf "k =
(caee  culy (uwesr

Late g 0/14;‘7
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We can do the vector case the same way:

f(x) = f(X)+(x—%)1'V f(§<)+%(x—§<)TV2 FR)(x—%)+. ..
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e The key idea is that for small values of ||x—xX||
low order terms dominate higher order terms.

e Thus, if the gradient is non-zero, then we can
increase or decrease the function value by pick-
ing x in the right direction from x, and suffi-
ciently close to x.

e Hence the gradient must be zero for f(x) to
be an extreme value.

e If the gradient is in fact zero, then the quadratic
term will dominate higher order terms. In a
small neighborhood of X we can ignore the
higher order terms.

e The statements about the second derivatives
follow. The local behavior of the function is
determined by the behavior of the quadratic
form whose matrix is the Hessian at x.

e For example, if the Hessian is positive definite
then for x close to X we can only increase the
function value, and so f(X) must be a local
minimuim.
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General Second Derivative Test

e To summarize: In order to have an extreme
value at some point the gradient at that point
must be zero.

e If in addition:

— The Hessian is positive definite we have a
local minimum,

— The Hessian is negative definite we have a
local maximum,

— The Hessian is indefinite we have a local
saddle point,

— The Hessian is (positive or negative) semidef-
inite the test is inconclusive.
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e Let’srevisit the second derivative test for func-

tions of two variables. (
[7&ﬁ X%
e The discriminant {"z X 7[’(1 .

0 f O f Pf N\ .
b= (8:1318:131 8 0x2015 N ((9:6185132) (%).

is actually the determinant of the Hessian.
Thus it is the product of the eigenvalues. Those
eigenvalues are real, and there are two of them.
If the product is positive then either both
eigenvalues are positive, or both are negative.
The Hessian, therefore, is either positive def-
inite, or negative definite. If in addition the
second order partial with respect to one of
the variables is positive we have a local min-
imum if we restrict the function to a line in
the corresponding coordinate direction, and
therefore we must have a global minimum. If
the product of the eigenvalues is negative then
one eigenvalue is positive and the other nega-
tive. We have a saddle point. If the Hessian is
positive semidefinite, and the product of the
eigenvalues zero, we may have a minimum or
a saddle point. If it’s negative semidefinite we
may a maximum or a saddle point.

et (A'/ll:) - (}l‘—l NA,-2) . - [/ln*l>
Lt (A) = prodytf 071 wWalie,
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