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Matrix Algebra 

THE INVERSE OF A MATRIX 
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MATRIX OPERATIONS 

 An           matrix A is said to be invertible if there is 

an          matrix C such that 

                                       and   

 where           , the           identity matrix.  

 In this case, C is an inverse of A. 

 In fact, C is uniquely determined by A, because if B 

were another inverse of A, then 

                                                                               . 

 This unique inverse is denoted by       , so that 

                                  and                .  

  

n n
n n

CA I AC I

n
I I n n

( ) ( )B BI B AC BA C IC C    

1A A I  1AA I 

1A
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MATRIX OPERATIONS 

 

 Theorem 4: Let                       . If                      , then  

  

 A is invertible and 

 

 

 If                      , then A is not invertible. 

 The quantity                is called the determinant of A, 
and we write   

 This theorem says that a          matrix A is invertible if 
and only if det         .  

a b
A

c d

 
  
 

0ad bc 

1 1 d b
A

c aad bc


 

    
0ad bc 

ad bc
det A ad bc 

2 2
0A 
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MATRIX OPERATIONS 

 Theorem 5: If A is an invertible          matrix, then for 

each b in ℝ𝑛, the equation               has the unique 

solution                . 

 Proof: Take any b in ℝ𝑛.  

 A solution exists because if          is substituted for x, 

then                                                            .  

 So          is a solution. 

 To prove that the solution is unique, show that if u is 

any solution, then u must be         . 

 If              , we can multiply both sides by       and 

obtain                          ,                  , and                 .   

n n
x bA 

1x bA

1 1x ( b) ( )b b bA A A AA I    

u bA 
1 1u bA A A  1u bI A 1u bA

1bA

1bA

1bA

1A

 © 2016 Pearson Education, Inc. 



Slide 2.2- 5 

MATRIX OPERATIONS 

 Theorem 6: 

a. If A is an invertible matrix, then       is invertible and 

 

b. If A and B are          invertible matrices, then so is 

AB, and the inverse of AB is the product of the 

inverses of A and B in the reverse order. That is, 

 

c. If A is an invertible matrix, then so is AT, and the 

inverse of AT is the transpose of       . That is, 

1 1( )A A  

1 1 1( )AB B A  

n n

1 1( ) ( )T TA A 

1A

1A
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MATRIX OPERATIONS 

 Proof: To verify statement (a), find a matrix C such 

that 

                              and  

 These equations are satisfied with A in place of C. 

Hence       is invertible, and A is its inverse. 

 Next, to prove statement (b), compute: 

 

 A similar calculation shows that                               .  

 For statement (c), use Theorem 3(d), read from right 

to left,                                                    .  

 Similarly,                                . 

1A C I  1CA I 

1 1 1 1 1 1( )( ) ( )AB B A A BB A AIA AA I        
1 1( )( )B A AB I  

1 1( ) ( )T T T TA A AA I I   
1( )T T TA A I I  

1A
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ELEMENTARY MATRICES 

 Hence AT is invertible, and its inverse is            . 

 The generalization of Theorem 6(b) is as follows: 

 The product of          invertible matrices is invertible, 

and the inverse is the product of their inverses in the 

reverse order. 

 An invertible matrix A is row equivalent to an 

identity matrix, and we can find        by watching the 

row reduction of A to I. 

 An elementary matrix is one that is obtained by 

performing a single elementary row operation on an 

identity matrix. 

n n

1A

1( )A T
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ELEMENTARY MATRICES 
 

 

 

 Example 5: Let                                ,                            , 

 

 

 

                                , 

 

  

 Compute E1A, E2A, and E3A, and describe how these 
products can be obtained by elementary row operations 
on A. 

 
                                                                

1

1 0 0

0 1 0

4 0 1

E

 
 
 
  

2

0 1 0

1 0 0

0 0 1

E

 
 
 
  

3

1 0 0

0 1 0

0 0 5

E

 
 
 
  

a b c

A d e f

g h i

 
 
 
  
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ELEMENTARY MATRICES 

 Solution: Verify that 

 

                                                          ,                                  , 

 

 

 

                                     .    

 

 

 Addition of       times row 1 of A to row 3 produces E1A. 

 

1

4 4 4

a b c

E A d e f

g a h b i c

 
 
 

    

2

d e f

E A a b c

g h i

 
 
 
  

3

5 5 5

a b c

E A d e f

g h i

 
 
 
  

4
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ELEMENTARY MATRICES 

 An interchange of rows 1 and 2 of A produces E2A, 

and multiplication of row 3 of A by 5 produces E3A. 

 

 Left-multiplication (that is, multiplication on the left) 

by E1 in Example 1 has the same effect on any           

matrix. 

 

 Since                  , we see that E1 itself is produced by 

this same row operation on the identity. 

3 n

1 1
E I E 
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ELEMENTARY MATRICES 

 Example 5 illustrates the following general fact about 

elementary matrices. 

 

 If an elementary row operation is performed on an 

           matrix A, the resulting matrix can be written as 

EA, where the            matrix E is created by 

performing the same row operation on Im. 

 

 Each elementary matrix E is invertible. The inverse of 

E is the elementary matrix of the same type that 

transforms E back into I.                 

 

m n
m m
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ELEMENTARY MATRICES 

 Theorem 7: An          matrix A is invertible if and 

only if A is row equivalent to In, and in this case, any 

sequence of elementary row operations that reduces A 

to In also transforms In into      . 

 Proof: Suppose that A is invertible. 

 Then, since the equation              has a solution for 

each b (Theorem 5), A has a pivot position in every 

row. 

 Because A is square, the n pivot positions must be on 

the diagonal, which implies that the reduced echelon 

form of A is In. That is,  𝐴 ~ 𝐼𝑛.  

n n

x bA 

1A

 © 2016 Pearson Education, Inc. 



Slide 2.2- 13 

ELEMENTARY MATRICES 

 Now suppose, conversely, that 𝐴 ~ 𝐼𝑛. 

 Then, since each step of the row reduction of A 

corresponds to left-multiplication by an elementary 

matrix, there exist elementary matrices E1, …, Ep such 

that  𝐴~𝐸1𝐴~𝐸2(𝐸1𝐴)~ … ~𝐸𝑝(𝐸𝑝−1… 𝐸1𝐴) = 𝐼𝑛                            

 That is,     

                                                        (1) 

 Since the product Ep…E1 of invertible matrices is 

invertible, (1) leads to 

 

                                                                      .  

1
...

p n
E E A I

1 1

1 1 1

1

1

( ... ) ( ... ) ( ... )

( ... )

p p p n

p

E E E E A E E I

A E E

 






 © 2016 Pearson Education, Inc. 
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ALGORITHM FOR FINDING 

 Thus A is invertible, as it is the inverse of an 

invertible matrix (Theorem 6). Also, 

                                                                       . 

 

 Then                              , which says that        results 

from applying E1, ..., Ep successively to In. 

 This is the same sequence in (1) that reduced A to In.  

 Row reduce the augmented matrix            . If A is row 

equivalent to I, then             is row equivalent to     

                 . Otherwise, A does not have an inverse. 

 

1
1 1

1 1
( ... ) ...

p p
A E E E E


    

1

1
...

p n
A E E I  

 A I

 A I
1I A

  

1A

1A
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ALGORITHM FOR FINDING 

 Example 2: Find the inverse of the matrix 

 

                                         , if it exists. 

 

 

 Solution:   

0 1 0

1 0 3

4 3 8

A

 
 
 

  

 

0 1 2 1 0 0 1 0 3 0 1 0

1 0 3 0 1 0 0 1 2 1 0 0

4 3 8 0 0 1 4 3 8 0 0 1

A I

   
   
   

       

1A

 © 2016 Pearson Education, Inc. 
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ALGORITHM FOR FINDING 

1 0 3 0 1 0 1 0 3 0 1 0

0 1 2 1 0 0 0 1 2 1 0 0

0 3 4 0 4 1 0 0 2 3 4 1

   
   
   

         

1 0 3 0 1 0

0 1 2 1 0 0

0 0 1 3 / 2 2 1/ 2

 
 
 

  

1 0 0 9 / 2 7 3 / 2

0 1 0 2 4 1

0 0 1 3 / 2 2 1/ 2

  
  
 

  

1A
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ALGORITHM FOR FINDING 

 Theorem 7 shows, since           , that A is invertible, 

and 

 

                                                               

 

 

 Now, check the final answer. 

 

 

A I

1

9 / 2 7 3 / 2

2 4 1

3 / 2 2 1/ 2

A

  
   
 

  

1

0 1 2 9 / 2 7 3 / 2 1 0 0

1 0 3 2 4 1 0 1 0

4 3 8 3 / 2 2 1/ 2 0 0 1

AA

      
        
     

           

1A
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ANOTHER VIEW OF MATRIX INVERSION 

 It is not necessary to check that                  since A is 

invertible.  

 

 Denote the columns of In by e1,…,en. 

 

 Then row reduction of              to                   can be 

viewed as the simultaneous solution of the n systems 

              ,               , …,                            (2) 

 where the “augmented columns” of these systems 

have all been placed next to A to form 

                                                               . 

1A A I 

 A I
1I A

  

1
x eA 

2
x eA  x e

n
A 

   1 2
e e e

n
A A I
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ANOTHER VIEW OF MATRIX INVERSION 

 The equation                  and the definition of matrix 

multiplication show that the columns of        are 

precisely the solutions of the systems in (2). 

 

1AA I 
1A
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