
Math 2270-1

Notes of 11/8/19

Orthogonal Projections

• We start with revisiting the idea of projecting
a point y in IR2 onto a line through the origin.

• The projection of y is the point on the line
that is closest to y.
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• This idea can be generalized to projecting a
point y in IRn onto a subspace of Rn.

• Theorem 8. Let W be a subspace of IRn.
Then each y in IRn can be written uniquely
in the form

y = ŷ + z (1)

where ŷ is in W and z is in W⊥.

• This is the orthogonal Decomposition the-
orem. The vector ŷ in (1) is called the or-
thogonal projection of y onto W .

• The textbook uses the notation

ŷ = projW y.

• The textbook proves the Theorem by actually
computing ŷ and z:

• In fact, if {u1,u2, . . . ,up} is any orthogonal
basis of W , then

ŷ =
y • u1

u1 • u1

u1 +
y • u2

u2 • u2

u2 + . . . +
y • up

up • up

up

=
p

∑

i=1

y • ui

ui • ui

ui

and
z = y − ŷ.

• However, the uniqueness of the decomposition
(1) shows that the orthogonal projections de-
pends only on W and not on its basis.
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• Example 2, textbook. Let

u1 =

⎡

⎣

2
5
−1

⎤

⎦ ,u2 =

⎡

⎣

−2
1
1

⎤

⎦ , and y =

⎡

⎣

1
2
3

⎤

⎦ .
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Geometric Interpretation of Orthogonal Projection

• Note that if the dimension of W is one, and
{u} is a basis of W then the orthogonal pro-
jection of y onto W is just

ŷ =
u • y

u • u
u.

• Thus the terms ui•ui

ui•ui
ui in

ŷ =
p

∑

i=1

ui • y

ui • ui

ui

are just the projections of y onto the spaces
span{ui}.
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• As in our initial example, the orthogonal pro-
jection ŷ of y onto W is the point in W that
is closest to y. This is the contents of

• Best Approximation Theorem (Theorem
9, p. 352) Let W be a subspace of IRn, let y be
any vector in IRn, and let ŷ be the orthogonal
projection of y onto W . Then ŷ is the closest
point W to y, in the sense that

∥y − v∥ > ∥y − ŷ∥

for all v in W distinct from ŷ.

• This is a simple consequence of the Pythagorean
Theorem.
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• Example 4, p. 353, textbook. Let

y =

⎡

⎣

−1
−5
10

⎤

⎦ ,u1 =

⎡

⎣

5
−2
1

⎤

⎦ ,u2 =

⎡

⎣

1
2
−1

⎤

⎦ , and W = Span {u1,u2}

Compute the point ŷ in W that is closest to
y and its distance from y.
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• Formulas simplify if our basis is orthonormal,
rather than just orthogonal.

• Theorem 10, p. 353. If {u1,u2, . . . ,up} is
an orthonormal basis for a subspace W of IRn,
then

ŷ = projW y =
p

∑

i=1

(y • ui)ui.

If U = [u1 u2 . . .up ], then

projW y = UUTy

for all y in IRn.
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• Next question: How do we get orthonormal
bases?
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