
Math 2270-1

Notes of 11/18/19

6.8 Applications of Inner Product Spaces

• Recall our Definition (p. 378, textbook): An
inner product on a vector space V is a func-
tion that, to each pair of vectors u and v in V ,
associates a real number < u,v > and satis-
fies the following axioms, for all vectors u and
v in V and all scalars c:

1. < u,v >=< v,u >.

2. < u + v,w >=< u,w > + < v,w >

3. < cu,v >= c < u,v >

4. < u,u >≥ 0 and < u,u >= 0 if and only
if u = 0.

A Vector space with an inner product is called
an inner product space.

• Associated with an inner product space is the
norm

‖u‖ =
√

< u,u >,

the concept of orthogonality

< u,v >= 0,

the Pythagorean Theorem, Projection, Least
Squares, the Cauchy-Schwarz Inequality, and
the Triangle Inequality.
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• We’ll look at two applications, one quickly,
and one in more detail.

Weighted Least Squares

• Suppose A is an m×n matrix with m > n and
b is a vector in IRm. Then the linear system

Ax = b (1)

is overdetermined and (usually) does not have
a solution. In that case it is often useful to
solve instead the Least Squares Problem

‖Ax − b‖2 = (Ax− b, Ax− b) = min .

• We can find the least squares solution x by
for example solving the normal equations

AT Ax = AT b.

• In this approach all equations have the same
weight and contribute equally to ‖Ax− b‖.

• But suppose that some of the equations in
(1) are more important than others. It may
be more important to get close agreement in
the first equation than in all the others, for
example.

• Weighted Least Squares can help in that sit-
uation. Define positive weights

wi > 0, i = 1, . . . , m.
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Also define the inner product

< u, v >=

m∑

i=1

wiuivi.

• (On Wednesday we considered the example
where m is 2 and the weights are 4 and 5.)

• With the diagonal weight matrix

W =









w1 0 0 . . . 0
0 w2 0 . . . 0
0 0 w3 . . . 0
...

...
...

. . .
...

0 0 0 . . . wm









we can write our new inner product as

< u,v >= (Wu,v) = (u, Wv).

• The associated norm then is

‖x‖w =
√

(x, Wx) =

√
√
√
√

m∑

i=1

wix2

i .

• As we saw when we first discussed Least Squares,
the residual Ax−b must be orthogonal to ev-
ery vector in the column space of A. Writing

A = [ a1 a2 . . . an ]

Math 2270-1 Notes of 11/18/19 page 3



we get the requirement that

< aj , Ax − b >= (aj , WAx − Wb) = 0.

• In matrix form this turns into the modified
normal equations

AT WAx = AT Wb.
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Fourier Series

• One of the most widely used inner products
on a function space V is

< f, g >=

∫
1

0

f(x)g(x)dx. (2)

• The textbook assumes that V is the linear
space of continuous functions, but actually
the space could be larger. For example, jump
discontinuities would not matter for the inte-
gral. A more typical choice of V would be the
set of all functions f that are square inte-
grable, i.e.,

∫
1

0

f2(x)dx

is well defined and finite.

• It is easy to verify that (2) defines an inner
product (exercise).

�
Note that (2) looks just like our ordinary

inner product, except that the “sum” is an inte-
gral. It’s one of the major simplifying principles
of analysis that integrals behave like sums.

• Suppose we want to approximate a function
f by a linear combination of some basis func-
tions

φ1, φ2, . . . , φn
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such that

‖f−
n∑

i=1

αiφi‖2 =< f−
n∑

i=1

αiφi, f−
n∑

i=1

αiφi >= min .

• As before we get the requirement that the
residual be orthogonal to the approximating
space, i.e.,

< φi, f −
n∑

j=1

αjφj >= 0, i = 1, . . . , n.

• This gives the linear system

Aa = b

where

A =









< φ1, φ1 > < φ1, φ2 > < φ1, φ3 > . . . < φ1, φn >
< φ2, φ1 > < φ2, φ2 > < φ2, φ3 > . . . < φ2, φn >
< φ3, φ1 > < φ3, φ2 > < φ3, φ3 > . . . < φ3, φn >

...
...

...
...

< φn, φ1 > < φn, φ2 > < φn, φ3 > . . . < φn, φn >









,

a =









α1

α2

α3

...
αn









, and b =









< φ1, f >
< φ2, f >
< φ3, f >

...
< φn, f >









.

Math 2270-1 Notes of 11/18/19 page 6



• Example: Compute A for the case that

φi(x) = xi−1 and < f, g >=

∫
1

0

f(x)g(x)dx.
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• The basis functions can be chosen suitably. It
would, of course, be particularly nice if they
were orthogonal. In that case, the coefficient
matrix A would be diagonal.

• Today’s main subject is the approximation of
periodic functions by periodic functions, lead-
ing to the large subject of Fourier Series and
Fourier Analysis.

• Jean-Baptiste Joseph Fourier, 1768–1830

• Periodic functions occur in many applications!

• A function f is p-periodic (or periodic of
period p, or periodic of periodicity p) if

f(t + p) = f(t)

for all t in the domain of f .

• We usually assume that p > 0. Negative p
also work, and p = 0 is sometimes included
for generality. (In that case any function is
considered 0-periodic.)

• Example: The ordinary trig functions are 2π-
periodic.

�
If f is periodic of period p then it is also

periodic of period pk for any non-zero integer k.

• For example sinx is 2π-periodic, but also 2000π-
periodic.

• By the way, the tangent function is π-periodic.
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• We will assume that our function is 2π peri-
odic.

• If we have any period p 6= 0 we can make
the function 2π-periodic by a linear change of
variables:

x =
2πt

p

• So let’s assume, without loss of generality,
that p = 2π, i.e.,

f(t + 2π) = f(t)

for all real numbers t.

• So what should we use as basis functions?

• It seems natural to choose

φi(t) = 1/2, cos t, sin t, cos 2t, sin 2t, . . .

• The reason for choosing the constant 1/2, rather
than 1, say, as our first basis function will be-
come apparent later. It simplifies the formu-
las for the coefficients.

• This leads to the choice

s(t) = Fn(t) =
a0

2
+

n∑

k=1

(
ak cos kt + bk sin kt

)

(3)
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• This is a partial sum of the Fourier Series

s(t) =
a0

2
+

∞∑

k=1

(
ak cos kt + bk sin kt

)
(4)

• We define the Fourier coefficients ak, bk,
by the least squares requirement

∫ π

−π

(
f(t) − Fn(t)

)2

dt = min (5)

• The inner product underlying this approach
is, of course,

< f, g >=

∫ π

−π

f(t)g(t)dt.

• As we discussed, we have to solve the linear
system

Ac = b

where
aij = (φi, φj),

c = [a0, a1, b1, a2, b2, . . . , an, cn]T ,

and
b = [(f, φi)].

�
Remarkably, the basis functions φi are or-

thogonal with respect to our chosen inner prod-
uct.
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• In fact, we get

∫ π

−π

sinnx cosmx =

∫ π

−π

sinnx =

∫ π

−π

cosnx = 0

∫ π

−π

sinnx sinmx =

∫ π

−π

cosnx cosmx =

{
π if n = m
0 if n 6= m

• If time allows, let’s do some of the calcula-
tions:
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• So we get the linear system











π
π 0

π
π

0
. . .

π





















a0

a1

b1

...
an

bn











=











∫ π

−π
1

2
f(t)dt

f(t) cos tdt
...

∫ π

−π
f(t) sinntdt











.

• So our linear system is actually diagonal!

�
We did what came naturally, and we ob-

tained a diagonal linear system!

• Solving the linear system gives

ak =
1

π

∫ π

−π

f(s) cos ksds, k = 0, 1, 2, . . .

bk =
1

π

∫ π

−π

f(s) sin ksds, k = 1, 2, 3, . . .

and the Fourier approximation

f(t) ≈ Fn(t)

=

∫ π

−π
f(s)ds

2π
+

+
1

π

n∑

k=1

(∫ π

−π

f(s) cos ksds cos kt +

∫ π

−π

f(s) sin ksds sin kt

)
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A Sawtooth Function
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Figure 1. A Sawtooth Function.

• Let’s do an example. Consider the sawtooth
function f shown in Figure 1. f is 2π-periodic
and

f(t) = t

in the interval (−π, π).

• We can easily compute the coefficients of our
Fourier Series: the cosine terms are zero be-
cause the integrand is odd:

ak =

∫ π

−π

t cos ktdt = 0

• The sine terms are more complicated. How-
ever, integration by parts is straightforward
and gives:
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bk =
1

π

∫ π

−π

t
︸︷︷︸

u

sin kt
︸ ︷︷ ︸

v′

dt

=
1

π







− t

k
cos kt

∣
∣
∣
∣

π

−π

+

∫ π

−π

1

k
cos ktdt

︸ ︷︷ ︸

=0








=
1

πk
[−π cos(kπ) − π cos(−kπ)]

=
−2 cos kπ

k

=

{
2

k
if k is odd

− 2

k
if k is even

• The Fourier series of our sawtooth function is,
therefore,

f(t) = 2(sin t−1

2
sin 2t+

1

3
sin 3t−1

4
sin 4t+. . .)

• Figures 2 through 5 show the function f and
its Fourier approximation for n = 5, 10, 20, 100.

• Here are some observations:

− The function f is odd, and the Fourier ap-
proximation is also odd for each n. It’s
obvious that this must happen! (why?)

− The approximated function is discontinu-
ous. For finite n, the Fourier approxima-
tion is infinitely differentiable. This is bound
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Figure 2. Fourier approximation of sawtooth function, n = 5.
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Figure 3. Fourier approximation of sawtooth function, n = 10.

to cause some kind of problem. It is ap-
parent from the graphs that there is some
oscillation at the discontinuity. It turns
out the vertical extent of that oscillation
remains constant, while the horizontal ex-
tent shrinks, as n goes to infinity. This is
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Figure 4. Fourier approximation of sawtooth function, n = 20.
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Figure 5. Fourier approximation of sawtooth function, n = 100.

the contents of the celebrated Gibbs Phe-
nomenon.

− Another effect of the discontinuities in f is
that the coefficients go to zero only slowly
as n goes to infinity.
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Another Example
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Figure 6. Fourier approximation of triangular wave, n = 5.
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Figure 7. Fourier approximation of triangular wave, n = 10.
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Figure 8. Fourier approximation of triangular wave, n = 20.

• Consider the function g that is 2π periodic
and that in the interval [−π, π] satisfies g(t) =
|t|. It’s graph is a triangular wave and its
Fourier Series is (exercise):

g(t) =
π

2
− 4

π

∞∑

k=1

cos(2k − 1)x

(2k − 1)2

=
π

2
− 4

π

(

cosx +
cos 3x

32
+

cos 5x

52
+ . . .

)

Figures 6 through 8 show the function g and
its Fourier approximations for n = 5, 10, 20.

The coefficients approach zero much faster,
and the Gibbs Phenomenon is absent.
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