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MATRIX OPERATIONS 
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MATRIX OPERATIONS 

 If A is an           matrix—that is, a matrix with m rows 

and n columns—then the scalar entry in the ith row 

and jth column of A is denoted by aij and is called the 

(i, j)-entry of A. See the Fig. 1 below. 

 Each column of A is a list of m real numbers, which 

identifies a vector in ℝ𝑚.  

 

m n
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MATRIX OPERATIONS 

 The columns are denoted by a1, …, an, and the matrix 

A is written as 

𝐴 = [𝑎1   𝑎2   …   𝑎𝑛]                      

 The number aij is the ith entry (from the top) of the jth 

column vector aj.  

 The diagonal entries in an           matrix                 are  

 a11, a22, a33, …, and they form the main diagonal of A.  

 A diagonal matrix is a square           matrix whose 

nondiagonal entries are zero. 

 An example is the          identity matrix, In. 

m n
ij

A a   

n m

n n
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SUMS AND SCALAR MULTIPLES 

 An           matrix whose entries are all zero is a zero 
matrix and is written as 0. 

 

 The two matrices are equal if they have the same size 
(i.e., the same number of rows and the same number 
of columns) and if their corresponding columns are 
equal, which amounts to saying that their 
corresponding entries are equal. 

 

 If A and B are           matrices, then the sum            is 
the            matrix whose columns are the sums of the 
corresponding columns in A and B. 

m n

m n A B
m n

 © 2016 Pearson Education, Inc. 



Slide 2.1- 5 

SUMS AND SCALAR MULTIPLES 

 Since vector addition of the columns is done 
entrywise, each entry in            is the sum of the 
corresponding entries in A and B. 

 

 The sum             is defined only when A and B are the 
same size. 

 

 Example 1: Let                                 

 

                             

 and                        . Find             and           . 

 
   

A B

A B

4 0 5 1 1 1
, ,

1 3 2 3 5 7
A B

   
       

2 3

0 1
C

 
  
 

A B A C
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SUMS AND SCALAR MULTIPLES 

 

 Solution:                                    but             is not  

 

 defined because A and C have different sizes. 

 

 If r is a scalar and A is a matrix, then the scalar 
multiple rA is the matrix whose columns are r 
times the corresponding columns in A. 

 

 Theorem 1: Let A, B, and C be matrices of the 
same size, and let r and s be scalars. 

a.                         

5 1 6

2 8 9
A B

 
   

 
A C

A B B A  
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SUMS AND SCALAR MULTIPLES 

b.                                                                   

c.                                                                                              

d.                                                                                       

e.                                                                                        

f.                                                                                         

 

 Each quantity in Theorem 1 is verified by showing 
that the matrix on the left side has the same size as 
the matrix on the right and that corresponding 
columns are equal. 

  
 

( ) ( )A B C A B C    
0A A 

( )r A B rA rB  
( )r s A rA sA  
( ) ( )r sA rs A
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MATRIX MULTIPLICATION 

 When a matrix B multiplies a vector x, it transforms x 

into the vector Bx. 

 If this vector is then multiplied in turn by a matrix A, 

the resulting vector is A(Bx). See the Fig. 2 below. 

 

 

 

 

 

 Thus A (Bx) is produced from x by a composition of 

mappings—the linear transformations. 
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MATRIX MULTIPLICATION 

 Our goal is to represent this composite mapping as 

multiplication by a single matrix, denoted by AB, so 

that                           . See Fig. 3 below 

 

 

 

 

 

 If A is          , B is          , and x is in      , denote the 

columns of B by b1, …, bp and the entries in x by   

x1, …, xp. 

( x)=(AB)xA B

m n n p
p
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MATRIX MULTIPLICATION 

 Then 

 

 By the linearity of multiplication by A,  

 

 

 

 The vector A (Bx) is a linear combination of the 
vectors Ab1, …, Abp, using the entries in x as weights. 

 In matrix notation, this linear combination is written 
as 

                                                                                   

1 1
x b ... b

p p
B x x  

1 1

1 1

( x) ( b ) ... ( b )

b ... b

p p

p p

A B A x A x

x A x A

  

  

1 2
( x) b b b x

p
A B A A A   
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MATRIX MULTIPLICATION 

 Thus multiplication by                                    

 transforms x into A(Bx). 

 

 Definition: If A is an           matrix, and if B is an         
matrix with columns b1, …, bp, then the product AB is 
the           matrix whose columns are Ab1, …, Abp.  

 

 That is, 

 

 

 Multiplication of matrices corresponds to composition 
of linear transformations.  

1 2
b b b

p
A A A  

m n n p

m p

1 2 1 2
b b b b b b

pp
AB A A A A       
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MATRIX MULTIPLICATION 

 

 Example 3: Compute AB, where                         and 

𝐵 =
4 3        6
1 −2      3

. 

 

 Solution: Write                                , and compute:  

 

 

 

 

 

 

2 3

1 5
A

 
   

 1 2 3
b b bB 
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MATRIX MULTIPLICATION 

 

                               ,                                   , 

 

 

 

 

 Then   

1

2 3 4
b

1 5 1

11

1

A
   

       

 
   

2

2 3 3
b

1 5 2

0

13

A
   

        

 
  
 

3

2 3 6
b

1 5 3

21

9

A
   

       

 
   

 1 2 3

11 0 21
b b b

1 13 9
AB A

 
     

Ab1 Ab2 Ab3 
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MATRIX MULTIPLICATION 

 Each column of AB is a linear combination of the 
columns of A using weights from the corresponding 
column of B. 

 

Row—column rule for computing AB 

 If a product AB is defined, then the entry in row i and 
column j of AB is the sum of the products of 
corresponding entries from row i of A and column j of B. 
If (AB)ij denotes the (i, j)-entry in AB, and if A is an  

 matrix, then                                                                       

 (𝐴𝐵)𝑖𝑗= +𝑎𝑖2𝑏2𝑗 + … 𝑎𝑖1𝑏1𝑗+ 𝑎𝑖𝑛𝑏𝑛𝑗 

 

 

m n
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PROPERTIES OF MATRIX MULTIPLICATION 

 Theorem 2: Let A be an           matrix, and let B and 

C have sizes for which the indicated sums and 

products are defined. 

a.                               (associative law of 

multiplication) 

b.                                       (left distributive law) 

c.                                     (right distributive law) 

d.                                           for any scalar r  

e.                          (identity for matrix     

multiplication) 

 

 

m n

( ) ( )A BC AB C

( )A B C AB AC  

( )B C A BA CA  

( ) ( ) ( )r AB rA B A rB 

m n
I A A AI 
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PROPERTIES OF MATRIX MULTIPLICATION 

 Proof: Property (a) follows from the fact that matrix 

multiplication corresponds to composition of linear 

transformations (which are functions), and it is 

known that the composition of functions is 

associative. Let 

 

 By the definition of matrix multiplication,   

1
c c

p
C    

1

1

c c

( ) ( c ) ( c )

p

p

BC B B

A BC A B A B

   

   
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PROPERTIES OF MATRIX MULTIPLICATION 

 The definition of AB makes                              for all 

x, so   

 

 The left-to-right order in products is critical because 

AB and BA are usually not the same.  

 Because the columns of AB are linear combinations 

of the columns of A, whereas the columns of BA are 

constructed from the columns of B. 

 The position of the factors in the product AB is 

emphasized by saying that A is right-multiplied by B 

or that B is left-multiplied by A. 

( x) ( )xA B AB

1
( ) ( )c ( )c ( )

p
A BC AB AB AB C   
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PROPERTIES OF MATRIX MULTIPLICATION 

 If                  , we say that A and B commute with 

one another. 

 

 Warnings: 

1. In general,                  .  

2. The cancellation laws do not hold for matrix 

multiplication. That is, if                   , then it is 

not true in general that            . 

3. If a product AB is the zero matrix, you cannot 

conclude in general that either           or           . 

AB BA

AB BA

AB AC
B C

0A  0B 
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POWERS OF A MATRIX 

 If A is an           matrix and if k is a positive integer, 
then Ak denotes the product of k copies of A: 

 

 

 

 If A is nonzero and if x is in ℝ𝑛, then Akx is the result 
of left-multiplying x by A repeatedly k times. 

 

 If           , then A0x should be x itself. 

 

 Thus A0 is interpreted as the identity matrix. 

 

n n

k

k

A A A

0k 
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THE TRANSPOSE OF A MATRIX 

 Given an            matrix A, the transpose of A is the  

            matrix, denoted by AT, whose columns are 

formed from the corresponding rows of A. 

 

Theorem 3: Let A and B denote matrices whose sizes 

are appropriate for the following sums and 

products. 

a.                        

b.                                          

c. For any scalar r, 

d.    

m n

n m

( )T TA A

( )T T TA B A B  

( )T TrA rA

( )T T TAB B A
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THE TRANSPOSE OF A MATRIX 

 The transpose of a product of matrices equals the 

product of their transposes in the reverse order. 
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