
Math 2270-1

Notes of 11/19/19

Announcements

6. Orthogonality and Least Squares

• The inner product, previously called the
dot product, of two vectors u and v in IRn,
is defined to be

u•v = uT v = [ u1 u2 . . . un ]

⎡

⎢

⎢

⎣

v1

v2

...
vn

⎤

⎥

⎥

⎦

=
n

∑

i=1

uivi.

(1)

• Theorem 1, p. 333. Let u, v and w be
vectors in IRn, and c be a scalar. Then

a. u • v = v • u

b. (u + v) • w = u • w + v •w

c. (cu) • v = c(u • v)

d. u • u ≥ 0, and u • u = 0 =⇒ u = 0.

• The length or norm−1− of a vector v is de-
fined by

∥v∥ =
√

v • v. (2)

−1− also called Standard Norm, Euclidean Norm,
or 2-norm.
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• Definition: Two vectors u and v are orthog-
onal (or perpendicular) if

u • v = 0. (3)

!
the zero vector is orthogonal to all vectors

in IRn.

• Suppose W is a subspace of IRn. Then the set

W⊥ = {z : z is orthogonal to all vectors in W}
(4)

is a linear space, called the orthogonal com-
plement of W .

• W⊥ is read as ”W-perpendicular” or, more
commonly, just ”W-perp”.

• Example: line and plane in IR3.

• Theorem 3, p. 337: Let A be an m × n ma-
trix. The orthogonal complement of the row
space of A is the null space of A, and the or-
thogonal complement of the column space of
A is the null space of AT

(RowA)⊥ = Nul and (ColA)⊥ = NulAT .
(5)

• A set of vectors {u1,u2, . . . ,up} from IRn is
an orthogonal set if each pair of distinct
vectors from that set is orthogonal, i.e.,

i ≠ j =⇒ ui • uj = 0. (6)
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• Theorem 4, p. 340, textbook. If

S = {u1,u2, . . . ,up} (7)

is an orthogonal set of nonzero vectors in
IRn, then S is linearly independent. (Hence S
is a basis of span(S).)

• Naturally, an orthogonal basis for a sub-
space W of IRn is a basis for W that is also
an orthogonal set.

• Orthogonal Bases are nice! You can compute
coefficients without solving a linear system.

• Suppose

B = {u1,u2, . . . ,up} (8)

is a basis of a subspace W of IRn,

B = [u1,u2, . . . ,up ] , (9)

and y is a vector in W . Then, in general,
computing the coordinate vector

[y]B =

⎡

⎢

⎢

⎣

c1

c2

...
cp

⎤

⎥

⎥

⎦

(10)

of y requires the solution of the linear system

B[y]B = y. (11)
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• However, if B is an orthogonal basis we can
compute the components of [y]B directly:

cj =
y • uj

uj • uj
. (12)

• Theorem 6, p. 345. An m × n matrix U
has orthonormal columns if and only if

UT U = I (13)

(where I is the n × n identity matrix.).

• Theorem 7, p. 345. Let U be an m × n
matrix with orthonormal columns, and let x
and y be vectors in IRn. Then:

a. ∥Ux∥ = ∥x∥
b. (Ux) • (Uy) = x • y

c. (Ux) • (Uy) = 0 if and only if x • y = 0

• The Pythagorean Theorem states that

∥u± v∥2 = ∥u∥2 + ∥v∥2 ⇐⇒ u • v = 0.
(14)

• The orthogonal projection of a vector v
onto a vector u is given by

proj
u
v =

u • v

uu
u. (15)

• Theorem 8. Let W be a subspace of IRn.
Then each y in IRn can be written uniquely
in the form

y = ŷ + z (16)
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where ŷ is in W and z is in W⊥.

• This is the orthogonal Decomposition the-
orem. The vector ŷ in (16) is called the or-
thogonal projection of y onto W .

• The textbook uses the notation

ŷ = projW y. (17)

• Best Approximation Theorem (Theorem
9, p. 352) Let W be a subspace of IRn, let y be
any vector in IRn, and let ŷ be the orthogonal
projection of y onto W . Then ŷ is the closest
point W to y, in the sense that

∥y − v∥ < ∥y − ŷ∥ (18)

for all v in W distinct from ŷ.

• Theorem 10, p. 353. If {u1,u2, . . . ,up} is
an orthonormal basis for a subspace W of IRn,
then

ŷ = projW y =
p

∑

i=1

(y • ui)ui. (19)

If U = [u1 u)2 . . .up ], then

projW y = UUTy (20)

for all y in IRn.

• We considered three versions of the Gram-
Schmidt Process.
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• Version 1: is described by Theorem 11, page
357, textbook: Given a basis

{x1,x2, . . . ,xp} (21)

for a non-zero subspace W of IRn, define

v1 = x1

v2 = x2 −
x2 • v1

v1 • v1

v1

v3 = x3 −
x3 • v1

v1 • v1

v1 −
x3 • v2

v2 • v2

v2

...

vp = xp −
xp • v1

v1 • v1

v1 −
xp • v2

v2 • v2

v2 − . . . −
xp • vp−1

vp−1 • vp−1

vp−1

(22)
Then {v1, . . . ,vp} is an orthogonal basis for
W . In addition,

span {v1, . . . ,vk} = span {x1, . . . ,xk} for k = 1, 2, . . . , p.
(23)

• Version 2 is just a more compact notation for
the process. For k = 1, . . . , p define

vk = xk −
k−1
∑

i=1

xk • vi

vi • vi
vi. (24)

• Version 3 combines normalization with orthog-
onalization: For k = 1, . . . , p define

⎧

⎪

⎪

⎨

⎪

⎪

⎩

wk = xk −
k−1
∑

i=1

(xk • vi)vi

vk = wk

∥wk∥

(25)
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• Definition: A square matrix Q is orthogonal
if its columns form an orthonormal set.

• This means that

QT Q = I, (26)

i.e., Q is invertible, and

Q−1 = QT . (27)

(see textbook, page 346.)

• Theorem 12, page 359, textbook. If A is
and m × n matrix with linearly independent
columns, then A can be factored a

A = QR (28)

where Q is an m × n matrix whose columns
form an orthonormal basis for Col(A) and R
is an n×n upper triangular invertible matrix
with positive entries on its diagonal.

• Suppose we have an overdetermined linear sys-
tem

Ax = b (29)

• Here A is m× n, x is in IRn, b is in IRm, and
m ≥ n (and typically, m > n).

• Usually, the system (29) will not have a solu-
tion. In that case, the next best thing is to
solve the alternative problem

∥Ax − b∥ = min (30)
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• In other words (the words of our textbook),
we want to find a vector x̂ in IRn such that

∥b − Ax̂∥ ≤ ∥b− Ax∥ (31)

for all x in IRn.

• The textbook calls such an x̂ a Least Squares
Solution of

Ax = b. (32)

• I would call it a solution of

∥Ax − b∥ = min . (33)

• First: Theorem 13 (p. 363) The set of least
square solutions of Ax = b coincides with
the nonempty set of solutions of the normal
equations

AT Ax = AT b. (34)

• Theorem 14 (p. 365) Let A be an m×n ma-
trix. The following statements are logically
equivalent. (This means they are either all
true or all false):

a. The equation Ax = b has a unique least squares
solution for each b in IRm.

b. The columns of A are linearly independent.

c. The matrix AT A is invertible.
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• Suppose we write

A = QR (35)

where

Q = (

n m − n

m Q1 Q2 ) (36)

is orthogonal and

R =

(

n

n R1

m − n 0

)

(37)

with R1 being upper triangular.

• Earlier we discussed how to obtain

A = Q1R1, (38)

for example by the Gram-Schmidt Process.

• To get Q from Q1 we simply add vectors to
the orthonormal basis of the column space of
A to get an orthonormal bass of IRm.

• We won’t actually need Q2, but it’s useful to
describe the idea.

• A significant property of an orthogonal matrix
is that multiplying with it does not alter the
norm of a vector:

∥Qx∥2 = (Qx)T (Qx) = xT QT Qx = xT x = ∥x∥2.
(39)
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• Using

A = QR and QT A = R (40)

we obtain

∥Ax − b∥2 = ∥QT (Ax − b)∥2

= ∥QT Ax − QT b∥2

=

∥

∥

∥

∥

(

R1x
0

)

−
(

QT
1 b

QT
2 b

)∥

∥

∥

∥

2

=
∥

∥R1x − QT
1 b

∥

∥

2
+

∥

∥QT
2 b

∥

∥

2
.
(41)

• Of the two terms on the right we have no con-
trol over the second, and we can render the
first one zero by solving (the square triangu-
lar n × n linear system)

R1x = QT
1 b. (42)

• Definition (p. 378, textbook): An inner
product on a vector space V is a function
that, to each pair of vectors u and v in V , as-
sociates a real number < u,v > and satisfies
the following axioms, for all vectors u and v
in V and all scalars c:

1. < u,v >=< v,u >.

2. < u + v,w >=< u,w > + < v,w >

3. < cu,v >= c < u,v >

4. < u,u >≥ 0 and < u,u >= 0 if and only
if u = 0.
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• A Vector space with an inner product is called
an inner product space.

• The Cauchy-Schwarz Inequality says

| < u,v > | ≤ ∥u∥∥v∥ (43)

• The triangle inequality says

∥u + v∥ ≤ ∥u∥ + ∥v∥. (44)

• One major application of inner product spaces
is weighted least squares.

• The underlying space is IRn and the inner
product is

< x,y >=
n

∑

i=1

wixiyi (45)

where the wi are given positive weights.

• The normal equations for the weighted Least
Squares Solution of

Ax = b (46)

are
AT WAx = AT Wb. (47)

• Another major example is Fourier Series.
The underlying linear space is the set of 2π
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periodic functions that are square integrable
over an interval of length 2π.

• The underlying inner product is

< f, g >=

∫ π

−π

f(t)g(t)dt. (48)

• The Fourier series of a 2π-periodic function f
is

f(t) =
a0

2
+

∞
∑

n=1

an cos(nt) + bn sin(nt) (49)

where the Fourier coefficients are given by

an =
< f, cos(nt) >

π
=

∫ π

−π
f(t) cos(nt)dt

π

bn =
< f, sin(nt) >

π
=

∫ π

−π
f(t) sin(nt)dt

π
(50)
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Linear Regression

Regression Least Squares
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