
Math 2270-1

Notes of 10/29/19

The Google Page Rank Algorithm

• Linear Algebra is as essential and central in
application as is Calculus.

• In spite of that fact we have not looked much
at specific examples of applications.

• However, today let’s look at one major appli-
cation that everybody is familiar with.

• We’ll discuss the basic idea of the the original
Google Page Rank Algorithm (GPRA)

• Of course, nowadays a Google search uses vastly
more complex ideas and concepts.

• A great introduction (no kidding) to the GPRA
is the US Patent No. 6,285,991, “Method
for Node Ranking in a Linked Database”, by
Larry Page, dated September 4, 2001.

• This is the only patent I’ve ever looked at.

• Larry Page, of course, is one of the founders of
Google, and he made billions of Dollars start-
ing with the ideas we’ll discuss today.

• A comprehensive book on the GPRA is: Amy
Langville and Carl Meyer, “Google’s PageR-
ank and Beyond”, Princeton University Press,
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2006, ISBN-13: 978-0-691-12202-1, ISBN-10:
0-691-12202-4.

• Our discussion today will contain several sim-
plifying ideas. I am indebted to Nick Kore-
vaar who adapted the GPRA for classroom
use and shared his notes with me.

• The GPRA focuses on the Google Matrix
which has one row and one column for every
web page considered by Google.

• See https://searchengineland.com/googles-search-
indexes-hits-130-trillion-pages-documents-263378

• According to that web page Google indexes
130 trillion web pages and documents.

• That’s about 18,000 pages and documents for
every person on earth.

• That’s mind boggling.

• Suppose the number of web pages searched is
n. Clearly, some web pages are more impor-
tant than others. We want to rank them.

• Note that this is independent of any particu-
lar search. Any actual search would look for
highly ranked pages that are also relevant to
the search.

• The basic idea of the GPRA is to consider
how web pages are linked to others.
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• Consider a surfer (Alice) moving from one
web page to another. After looking at some
particular page, with likelihood ϵ (where in
the original patent ϵ = 0.15) Alice will move
next to a random page in the web, and with
likelihood 1 − ϵ Alice will follow with equal
probability one of the links on the current
page. If there aren’t any links Alice will move
to a random page with equal probability.

• The Google matrix G has one row and one
column for each web page.

• The entry gij is the likelihood that Alice, when
on page j, moves next to page i.

• Suppose that page j has links to nj ≥ 0 other
pages. Then

gij =

⎧

⎪

⎨

⎪

⎩

{

(1−ϵ)
nj

+ ϵ
n

if page j has a link to page i
ϵ
n

otherwise
if nj > 0

1
n

if nj = 0

• A page with no outlinks (links to other pages),
is a dangling page (or node). For simplicity
we’ll ignore dangling nodes in our discussion.
Thus for all pages we assume that

nj > 0.

• Then we can write

G = (1 − ϵ)A + ϵB
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where

aij =

{

0 if page j has no link to page i
1

nj
otherwise

and B has all entries equal to 1
n
.

• Note that G is a huge matrix which has no
zero entries at all.

• Usually, problems with large matrices become
tractable only when the matrices are sparse,
i.e., they have many zero entries.

!
The Google matrix is full, i.e., no entry at

all is zero.

• However, most entries are the same, and equal
to ϵ/n.

• The columns of G add to 1. The entries in
each column are probabilities.

• Consider the simple example shown in Figure
1. Here n = 4. Page 1 links to page 2, page
2 to page 3, page 3 to page 4, page 4 back to
page 1, and page 4 also links to page 3. There
is also a link from page 1 to page 3.

• page 3 has three pages linking to it, so it ought
to be important.

• page 4 is being linked to by an important
page, so it ought to be important also. Pages
1 and 2 seem to be less important. However,
page 1 is being linked to by an important page
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Figure 1. A simple internet.

and 2 is not, so we expect page 1 to be more
important than page 2.

Math 2270-1 Notes of 10/29/19 page 5



• Let’s see what GPRA says.

• Letting ϵ = 1
6 (so as to get simple fractions)

we get the matrices:

A =

⎡

⎢

⎣

0 0 0 1/2
1/2 0 0 0
1/2 1 0 1/2
0 0 1 0

⎤

⎥

⎦

and

G =
5

6
A +

1

6
B

=
5

6
A +

1

24

⎡

⎢

⎣

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

⎤

⎥

⎦

=
1

24

⎡

⎢

⎣

1 1 1 11
11 1 1 1
11 21 1 11
1 1 21 1

⎤

⎥

⎦

• We now shift our point of view. Suppose the
internet is surfed by a number N of surfers
that is much larger than the number of pages:

N >> n.

Every second, all surfers go simultaneously to
another page, each according to the probabil-
ities given by G.
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• Then at any point in time for each page there
is a number of surfers visiting that page at
the moment.

• Suppose now that v(t) is the vector of relative
frequencies at a certain time t. Thus

vj(t) =
# of visitors on page j at time t

N

!
Then the expected vector v(t + 1) is

v(t + 1) = Gv(t) (1)

• Every page i receives new visitors from other
pages according to the probabilities in the i-th
row of G. That’s just what (1) says.

!
It turns out that there is a vector v of rel-

ative frequencies where the numbers of visitors
remains constant on each page, i.e.,

Gv = v

• In other words, 1 is an eigenvalue of G! The
corresponding eigenvector v gives the ranking
of the pages. Page i is more important than
page j if vi > vj .
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• Why is 1 an eigenvalue? We can easily see
that 1 is an eigenvalue of GT since the columns
of G, and the rows of GT add to 1. Thus if
we multiply GT with the vector e of all 1s we
get

GT e = e.

• The eigenvalues of G are the same as those
of GT . So 1 is an eigenvalue of G. Using
Matlab, we can compute the corresponding
eigenvector of G. It is given by

v =

⎡

⎢

⎣

0.1834
0.1181
0.3583
0.3402

⎤

⎥

⎦

• Thus the pages, ordered by decreasing impor-
tance are

3 > 4 > 1 > 2 ,

as we expected.

• The same ranking is suggested in Figure 2
where the amount of red color indicates the
importance of the page.
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Figure 2. Pages Ranked.
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Perron Frobenius Theory

• The theoretical aspects of the Google Ma-
trix and computations with it are well beyond
the scope of our class, but I’ll list some rel-
evant facts. For details consult the book by
Langville and Meyer.

• 1 is an eigenvalue of G.

• Its algebraic and geometric multiplicity are
both 1.

• The components of the corresponding eigen-
vector are all of the same sign. Thus in par-
ticular we can find an eigenvector v of rel-
ative frequencies, with positive components
that add to 1.

• The eigenvector v can be found as a nontrivial
solution of the homogeneous linear system

(G − I)v = 0

or as a solution of the eigenvalue problem

Gv = v.

• All eigenvalues of G other than 1 have an ab-
solute value less than 1.

• The iteration

v0 given, vk+1 = Gvk, k = 0, 1, 2, . . .
(2)
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converges to v.

• It converges for all starting vectors v0 but of
course it converges the faster the closer v0 is
to v. So in particular one might construct a
starting vector based on results from analyz-
ing an earlier version of the web.

• The computational challenges are formidable.
Using the straightforward implementation of
the iteration (2) one iteration costs n2 opera-
tions. With n being 1 trillion, and being able
to perform a trillion operations per second,
say, one iteration still takes a trillion seconds
which equals about 32,000 years.

• What Google actually does to compute page
ranks is a closely guarded trade secret.
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