
Math 2270-6

Notes of 4/19/19

Announcements

• We are done with our subject. The remaining three days of the semester will be
review.

• The last day of classes is Wednesday. We don’t meet on Thursday, and Friday is
a Reading Day.

• Next week, on Wednesday, December 11, 10:30-12:30am, in LCB 215, we will
have an optional Question and Answer Session for anyybody who is interested.

• Our final exam will take place Thursday, December 12, 8:00-10:00, in our regular
classroom.

• It will cover the semester about evenly. (There will be no particular emphasis
on Chapter 7).

• I will be generally around until the final, and you are welcome to drop by my
office any time, but if you need to make a special trip to see me let’s make an
appointment.
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Quotes

• My first thought when I find myself in a room full of manure is “there must be
a pony here somewhere”. (Ronald Reagan)

• The purpose of computing is insight, not numbers (Hamming.)

• It ain’t so much the things we don’t know that get us into trouble. It’s the things
we do know that just ain’t so. (Artemus Ward.)

• In theory, theory and praxis are the same. In praxis, they aren’t. (Richard
Nixon.)

• Don’t worry about your difficulties with mathematics. I can assure you that
mine are still greater. (Albert Einstein, to his neighbor’s young daughter.)

• A Vulgar Mechanick can practice what he has been taught or seen done, but if
he is in an error he knows not how to find it out and correct it, and if you put
him out of his road, he is at a stand; Whereas he that is able to reason nimbly
and judiciously about figure, force and motion, is never at rest till he gets over
every rub. (Isaac Newton)
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Principles

• Focus on understanding concepts, facts, and connections. Numerical calculations
are for computers.

• Understanding any piece of mathematics means being able to

− explain it in terms of simpler mathematics,

− to make many and redundant connections between facts and concepts,

− to recognize and verbalize the underlying principles,

− to solve mathematical problems,

− to apply the mathematics to problems outside of mathematics.

• Understanding a piece of mathematics does not mean the ability

− to apply a formula to a specific type of problem,

− to read an example, and then do a similar example,

− to google a word or phrase and apply what you find, correctly or incorrectly

− to recite formulas, definitions, and theorems,

− to pass a test, and then forget the material,

− to operate a calculator,

− to use Maple or Matlab.

• Language matters! If you do not understand the technical language of your
subject you will not be able to think about it, to make progress in understanding
it, and to use it to solve problems. So make sure you know the precise meaning
of the technical words and phrases in your subject.

• Here is an incomplete list of words and phrases that we introduced in our class.
You want to know what each of them means:

adjugate matrix, algebraic multiplicity of an eigenvalue, augmented matrix, basic
variable, basis, basis conversion, best approximation, block matrix, characteristic
equation, characteristic polynomial, coefficient matrix, cofactor, cofactor expan-
sion, columns of a matrix, column space of a matrix, consistent linear system,
coordinates of a vector with respect to a basis, Cramer’s Rule, defective matrix,
determinant of a matrix, diagonal entries of a matrix, diagonal of a matrix, diag-
onalizable matrices, diagonal matrix, dimension of a vector space, eigenspace of a
matrix, eigenvalue of a matrix, eigenvector of a matrix, elementary row operations,
entries of a matrix, equivalent linear system, Fourier Coefficients, Fourier Series,
free variable, geometric multiplicity of an eigenvalue, Gershgorin Circle, Gershgorin
Theorem, Hermitian matrix, homogeneous linear system, indefinite matrix, inner
product, inner product space, inverse matrix, invertible matrix, isomorphism, Jor-
dan block, Jordan canonical form, kernel of a matrix, least squares, least squares
solution of an overdetermined system, left singular vectors of a matrix, linear com-
bination of a set of vectors, linear function, linearly independent set of vectors,
linear space, linear transformation, lower triangular matrix, LU factorization of a
matrix, matrix, matrix multiplication, negative definite matrix, negative semidefi-
nite matrix, norm of a vector, normal equations, null space of a matrix, one-to-one
mapping, onto mapping, orthogonal basis of a linear space, orthogonal complement
of a subspace, orthogonal decomposition of a vector, orthogonally similar matri-
ces, orthogonal matrix, orthogonal projection, orthogonal set, orthogonal vectors,
orthonormal basis, orthonormal set, orthonormal vectors, partitioned matrix, per-
mutation matrix, pivot column, pivoting, pivot position, pivot row, positive definite
matrix, positive semidefinite matrix, QR factorization of a matrix, quadratic form,
rank of a matrix, rectangular matrix, reduced row echelon form of a matrix, right
hand side of a linear system, right singular vectors of a matrix, row echelon form
of a matrix, rows of a matrix, row space of a matrix, scalar, similarity transform,
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similar matrices, singular matrix, singular value decomposition, singular values, six
views of matrix multiplication, solution of a linear system, solution set of a linear
system, solving a linear system, span of a set of vectors, spanning set of a vector
space, square matrix, standard basis of IRn, standard basis vectors in IRn, standard
matrix of a linear transformation, subspace of a vector space, symmetric matrix,
triangular matrix, unit lower triangular matrix, upper triangular matrix, vector,
weighted least squares.

• Matrices define linear transformations between finite dimensional vector spaces,
and for every linear transformation and given bases of domain and range there
is a unique matrix that defines that transformation.

• In short, matrices and linear transformations are synonymous.

• Multiplying matrices means composing linear functions.

• To generalize a concept we ask what are its key properties, and then investigate
what else has these properties. We used this procedure in our class to generalize
IRn to linear spaces, and the dot product to inner products.

• While we may not carry out actual computations that way, it is often useful to
think of numerical operations in terms of multiplying with certain matrices.

• Block matrices work like ordinary matrices.

• Whenever you see a minimization problem look for a positive definite matrix.

• Multiplying with orthogonal matrices does not amplify errors.

• A real matrix has an orthonormal set of eigenvectors if and only if it is symmetric.

• Trying to compute eigenvalues by computing the characteristic polynomial and
finding its roots is futile except for very small matrices. By comparison, finding
roots of a polynomial by finding the eigenvalues of its companion matrix works
beautifully.

• The general solution of any linear problem is any particular solution, plus the
general solution of the associated homogeneous problem.
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Semester Subject Review

�
This list is neither complete nor self contained. Rather, the individual points

should stir your memory of related concepts, facts, and connections. If you draw a
blank you should review the relevant parts of your notes or the textbook.

• The focus of chapter 1 is on linear systems

Ax = b (1)

where A is an m × n matrix, x is in IRn, and b is in IRm.

• A vector x satisfying the equation Ax = b is a solution of the linear system.

• Solving the linear system means figuring out whether there is a solution, and if
so, how many, and what they are.

• If m = n then the matrix A, and the system Ax = b, are said to be square.

• Ax is a linear combination of the columns of A with the coefficients being
given by the entries of x. If

A = [a1 a2 . . . an ] (2)

where the ai are the columns of A, and

x =









x1

x2

...
xn









(3)

then

Ax = [a1 a2 . . . an ]









x1

x2

...
xn









=

n
∑

i=1

xiai = b. (4)

• In general, a linear combination of vectors v1, v2, . . . vn is an expression of
the form

n
∑

i=1

civi (5)

where the coefficients or weights ci are real numbers.

• A function
f : IRn −→ IRm (6)

is a function whose domain is IRn and whose codomain is IRm. We also write it
in a more familiar form as

y = f(x) (7)

where x is in IRn and y is in IRm,

• f is linear if
f(u + v) = f(u) + f(v) and f(cu) = cf(u) (8)

for all vectors u and v in IRn and scalars (real numbers) c.

• The matrix transformation
f(x) = Ax (9)
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is linear.

• Actually, and most amazingly, given a linear function T from IRn to IRm, there
is a matrix A such that

T(x) = Ax. (10)

• To construct the matrix A we use the columns of the identity matrix

I =









1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1









. (11)

• The standard notation for the i-th column of I is ei which is the vector in IRn

all of whose entries are zero, except that the i-th entry equals 1.

• The ei are called the standard basis vectors in IRn. The value of n is not part
of the notation, it should be clear from the context.

• For any vector

x =









x1

x2

...
xn









(12)

we have

x = Ix =
n
∑

i=1

xiei. (13)

• Suppose now that we are given a linear function (or transformation) T from IRn

to IRm. Let
ai = T (ei), i = 1, 2, . . . , n (14)

Moreover, let A be the m × n matrix

A = [a1 a2 . . . an ] (15)

Then

T (x) = T

(

n
∑

i=1

xiei

)

=

n
∑

i=1

T (xiei) (by part 1 of linearity!)

=

n
∑

i=1

xiT (ei) (by part 2 of linearity!)

=
n
∑

i=1

xiai

= Ax.

(16)

• In other words, with our choice of A,

T (x) = Ax (17)

• In this context, A is called the standard matrix of the transformation T .
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�
Simplifying things slightly we can say that linear functions are synony-

mous with matrices.

• That’s why matrices are so important!

• A set
{v1,v2, . . . ,vn} (18)

of vectors is linearly independent if the only way the zero vector can be written
as a linear combination of the given vectors is to make all coefficients zero.

• In other words:

n
∑

i=1

civi = 0 =⇒ c1 = c2 = . . . = cn = 0. (19)

• Here are a number of true statements about linear independence. (We assume
that all sets contain only vectors from the same space, i.e, they all have the same
number of entries.)

− A set containing just one vector v is linearly independent if and only if v is
non-zero.

− A set containing exactly two vectors is linearly independent if and only if
neither vector is a multiple of the other.

− If a set of (more than one) vectors is linearly dependent than at least one of
those vectors can be written as a linear combination of the others.

− No vector in a linearly independent set can be written as a linear combination
of the others.

− A linearly dependent set may (or may not) contain vectors that cannot be
written as a linear combination of vectors.

− Any set that contains the zero vector is linearly dependent.

− The matrix transformation
y = Ax (20)

is one-to-one if and only if the columns of A are linearly independent.

− The columns of A are linearly independent if and only if the homogeneous
problem

Ax = 0 (21)

has only the trivial solution x = 0.

• The span of a set of vectors is the set of all linear combinations of those vectors.

• Here are some true statements about the span of a set of vectors.

− Any vector in the span of a linearly independent set can be written in only
one way as a linear combination of the given vectors.

− Any vector in the span of a linearly dependent set can be written in more than
one way as a linear combination of the given vectors.

− The linear system
Ax = b (22)

has a solution if and only if b is in the span of the columns of A.

− The linear system has a solution for all right hand sides b if and only if the
span of the columns of A is all of IRm.

− The linear system has a unique solution if b is in the span of the columns of
A and those columns are linearly independent.
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− The linear system has a unique solution for all right hand sides b if the span
of the columns of A is all of IRm and the columns are linearly independent.

• The linear system Ax = b is homogeneous if b = 0.

• Here are some more true statements about linear systems:

− if u and v are solutions of Ax = 0 then so are u + v and any other linear
combination of u and v.

− If u and v are solutions of the inhomogeneous system Ax = b then u − v is
a solution of the homogeneous system Ax = 0.

− A linear system may have no solutions, a unique solution, or infinitely many
solutions. (It may not have precisely 17 solutions, for example.)

− The general solution of the linear system

Ax = b (23)

can be written as any particular solution plus the general solution
of the homogeneous system

Ax = 0. (24)

• The last statement is one of the most central principles in mathematics. It applies
to all linear problems, not just linear algebraic equations.

Computations

• Given a matrix A you want to understand clearly how to answer the following
questions about the linear system Ax = b:

− Given b is there at least one solution? In other words, is the system consis-
tent for that vector b?

− Is there a solution for all right hand sides b? In other words, is the system
consistent for all possible b? In yet other words, is the matrix transformation
T(x) = Ax onto?

− If the system is consistent, is there only one solution? If there is we call the
solution unique. In other words, is the matrix transformation T(x) = Ax
one-to-one?

• There are many ways to compute the answers to these problems. Those we
discussed are based on the reduced and unreduced row echelon forms of the
augmented matrix

M = [ A b ] (25)

of the linear system Ax = b.

• These are obtained by applying elementary row operations to the augmented
matrix. There are three such operations:

1. Add a multiple of one row to another row.

2. Interchange two rows.

3. Multiply a row by a non-zero constant.

• It is clear that these operations do not change the solution of the linear sys-
tem and generate augmented matrices corresponding to equivalent linear sys-
tems.

• Two linear systems are equivalent if they have the same solution sets.
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• A rectangular matrix is in echelon form if it has the following three properties:

1. All nonzero rows are above any rows of all zeros.

2. Each leading entry of a row is in a column to the right of the leading
entry of the row above it.

3. All entries in a column below a leading entry are zeros.

• If a matrix in echelon form satisfies the following additional conditions, then it
is in reduced echelon form.

4. The leading entry in each non-zero row is 1.

5. Each leading 1 is the only nonzero entry in its column.

• A pivot position in a matrix M is a location in M that corresponds to a
leading 1 in the reduced row echelon from of M . A pivot row of A is a row that
contains a pivot position and a pivot column of A is a column that contains a
pivot position.

• The reduced row echelon form of a matrix is unique. (We will see precisely
why this is true when we get to chapter 4.)

• A variable is basic if it corresponds to a pivot column.

• Otherwise it is free. The free variables can assume any values in the solutions
of the linear systems. The values of the basic variables are determined uniquely
by those of the free variables.

• Here are some true statements about the solution of linear systems

Ax = b (26)

− The linear system has a solution if and only if the last column of the augmented
matrix is not a pivot column.

− The linear system has infinitely many solutions only if it has free variables.
(For solutions to exist the last column of the augmented matrix still must not
be a pivot column.)

• The general solution of the linear system can be written down most easily given
the reduced row echelon form of the augmented matrix.

• However, some effort can be saved by just computing the (unreduced) row echelon
form and then applying backward substitution.

• The computations of row echelon forms in the textbook are written as sequences
of matrices, for clarity. Doing the calculations that way involves a lot of copying,
however.

• If the purpose of the calculation is strictly the solution of the linear system, rather
than theoretical insight, a more streamlined procedure can be used. Everything
is written down only once. However, I recommend that to guard against errors
you keep track of row sums and compute them redundantly in two ways. As long
as they are equal you can be reasonably confident that your calculations so far
are accurate.

• Example: Solve the linear system:

a + b + c d = 21 = 2
a + 2b + 4c + 8d = 22 = 4
a + 3b + 9c + 27d = 23 = 8
a + 4b + 16c + 64d = 24 = 16

(27)
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• Here is the detailed calculation

# a b c d RHS RS

1 1 1 1 1 2 6
2 1 2 4 8 4 19
3 1 3 9 27 8 48
4 1 4 16 64 16 101

5 = 2− 1 1 3 7 2 13
6 = 3− 1 2 8 26 6 42
7 = 4− 1 3 15 63 14 95

8 = 6− 2 × 5 2 12 2 16
9 = 7− 3 × 5 6 42 8 56

10 = 9− 3 × 8 6 2 8

(28)

10 =⇒ 6d = 2 =⇒ d = 1

3

8 =⇒ 2c + 4 = 2 =⇒ c = −1
5 =⇒ b − 3 + 7

3
= 2 =⇒ b = 8

3

1 =⇒ a + 8

3
− 1 + 1

3
= 2 =⇒ a = 0

(29)

• We add two m × n matrices entry by entry, just like we add vectors.

• Similarly, we multiply any matrix by a scalar by multiplying each entry with that
scalar.�

However, we multiply matrices so that the product of two matrices is the
standard matrix of the composition of the corresponding linear functions.

Matrix Multiplication

• The composition f ◦ g of two linear functions f and g is linear, and its matrix is
the product of the matrices of the constituent functions.

f ◦ g

IRp

g

−→
B

n × p

IRn

f

−→
A

m × n

IRm

C = AB

C is m × p

(30)

• Note the switch in the sequence. B comes first in the diagram and second in the
product, just like g comes first in the diagram and second in the composition.

Six Views of C = AB

• We’ll look at six different ways of thinking about matrix multiplication. All of
them are useful!

• For any matrix A let ri(A) denote the i-th row of A, interpreted as a matrix
with one row, and let ci(A) denote the i-th column, interpreted as matrix with
one column. We also identify 1 × 1 matrices with their single scalar entry.
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• Let’s illustrate the descriptions with the matrices

A =

[

1 2
3 4

]

, B =

[

2 1
1 2

]

and C =

[

4 5
10 11

]

. (31)

1. The Formula. Here is what you might find in a textbook or mathematical
dictionary: The product of an m×n matrix A and an n×p matrix B is an m×p
matrix C = AB where

cij =
n
∑

k=1

aikbkj , i = 1, . . . , m, j = 1, . . . , p. (32)

• For our example,

AB =

[

1 2
3 4

] [

2 1
1 2

]

=

[

1 × 2 + 2 × 1 1 × 1 + 2 × 2
2 × 3 + 1 × 4 1 × 3 + 2 × 4

]

=

[

4 5
10 11

]

.

(33)

2. Writing it. We saw in class that it is advantageous to write the second factor
to the upper right of the first factor. The product fits into the corner made by
the two factors, and the i − j entry of C sits at the intersection of the i-th row
of A and the j-th column of B. In our example we get

[

2 1
1 2

]

[

1 2
3 4

] [

4 5
10 11

] (34)

• More generally, we get:

B n × p

















b11 . . . b1j . . . b1p

...
...

...
bi1 . . . bij . . . bip

...
...

...
bn1 . . . bnj . . . bnp

































a11 . . . a1j . . . a1n

...
...

...
ai1 . . . aij . . . ain

...
...

...
am1 . . . amj . . . amn

































...
. . . cij . . .

...

















A m × n C = AB m × p

(35)
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�
It is evident from this picture that

− the i − j entry of C is the (dot) product of the i-th row of A and the j-th
column of B,

− the j-th column of C is the product of A and the j-th column of B,

− the i-th row of C is the product of the i-th row of A and B.

3. The entry by entry view.

cij = ri(A)cj(B). (36)

In our example

AB =

[

1 2
3 4

] [

2 1
1 2

]

=









[ 1 2 ]

[

2
1

]

[ 1 2 ]

[

1
2

]

[ 3 4 ]

[

2
1

]

[ 3 4 ]

[

1
2

]









=

[

4 5
10 11

]

.

(37)

4. The Column View. This is actually how we first derived our formula for matrix
multiplication: the j-th column of C equals A multiplied with the j-column of
B. As a formula:

cj(C) = Acj(B), j = 1, . . . , p. (38)

In our example:

C =

[

1 2
3 4

] [

2 1
1 2

]

=

[

A

[

2
1

]

A

[

1
2

] ]

=

[ [

1 2
3 4

] [

2
1

] [

1 2
3 4

] [

1
2

] ]

=

[

4 5
10 11

]

.

(39)

• Note that in this view every column of the product is a linear combination of the
columns of A. The coefficients of the linear combination are in the corresponding
column of B.

5. The Row View. The i-th row of C is the i-th row of A multiplied with B:

ri(C) = ri(A)B. (40)

In our example:

C =

[

1 2
3 4

] [

2 1
1 2

]

=

[

[ 1 2 ]B
[ 3 4 ]B

]

=









[ 1 2 ]

[

2 1
1 2

]

[ 3 4 ]

[

2 1
1 2

]









=

[

4 5
10 11

]

(41)
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• Note that in this view every row of the product is a linear combination of the
rows of B. The coefficients of the linear combination are in the corresponding
row of A.

6. The matrix view. Note that the product of the k-th column of A and the
k-th row of B is an m × p matrix, the product of an m × 1 matrix and a 1 × p
matrix. The i − j entry of ck(A)rk(B) is aikbkj . So we get, by our formula

cij =

n
∑

k=1

aikbkj , (42)

that

C =

n
∑

k=1

ck(A)rk(B). (43)

In our example

C =

[

1 2
3 4

] [

2 1
1 2

]

=

[

1
3

]

[ 2 1 ] +

[

2
4

]

[ 1 2 ]

=

[

2 1
6 3

]

+

[

2 4
4 8

]

=

[

4 5
10 11

]

(44)

�
in general, the product of an m × 1 matrix A and a 1 × p matrix B is an

m × p matrix C which has rank 1. Every row of C is a multiple of A and every
column of C is a multiple of B.
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The Inverse of a Matrix

• A square n × n matrix A is said to be invertible if there is an n × n matrix C
such that

CA = I and AC = I (45)

where I = In, the n × n identity matrix.

• If A is not invertible it is said to be singular.

• the terms invertible and singular only apply to square matrices.

• If A is invertible its inverse is unique.

• There are many equivalent properties of a square matrix that are equivalent to
invertibility. Some of them are expressed in what the textbook calls the

Invertibility Theorem Let A be a square n × n matrix. Then the following
statements are equivalent. That is, for a given A, the statements are either all true
or all false.

a. A is an invertible matrix.

b. A is row equivalent to the identity matrix.

c. A has n pivot positions.

d. The equation Ax = 0 has only the trivial solution.

e. The columns of A form a linearly independent set.

f. The linear transformation x −→ Ax is one-to-one.

g. The equation Ax = b has at least one solution for each b in IRn.

h. The columns of A span IRn

i. The linear transformation maps IRb onto IRn.

j. There is an n × n matrix C such that CA = I.

k. There is an n × n matrix D such that CA = I. (Of course, the left and right
inverses C and D are actually equal.)

l. AT is an invertible matrix.

m. ColA = IRn.

n. dimColA = n.

p. rankA = n.

q. NulA = {0}.
r. dimNulA = 0.

More Properties of Inverse Matrices

• If A is invertible and Ax = b then x = A−1b.

• If A is invertible and AB = C then B = A−1C.

• If A is invertible and BA = C then B = CA−1.

• The process of inverting and transposing a matrix commute:

(

AT
)−1

=
(

A−1
)T

. (46)

• Assuming A and B are invertible and have the same size,

(AB)−1 = B−1A−1 (47)
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In general
B−1A−1 6= A−1B−1 (48)

since matrix multiplication does not commute.

Partitioned Matrices

• A partitioned matrix, or block matrix, is a matrix whose entries are matrices.
Block matrices have many useful properties but we discussed only one

�
Major Principle: Provided the partitions are conformable, multiplying

block matrices works exactly like multiplying matrices.

• As an application, we computed the inverse of a 2 × 2 block matrix:

A =

[

A11 A12

A21 A22

]

(49)

where A11 is p × p, A22 is q × q, and p + q = n. Of course, A12 is p × q and A21

is q × p.
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Matrix Factorizations

• A factorization of a matrix A is obtained by writing A as a product of several
(usually 2 or 3) matrices.

• In particular we discussed the LU factorization of a square matrix

A = LU (50)

where

L is unit lower triangular, i.e.,

lii = 1, i = 1, 2, . . . n and j < i =⇒ aij = 0 (51)

U is upper triangular, i.e.,

lii = 1, i = 1, 2, . . . n and j > i =⇒ aij = 0 (52)

• In other words, denoting possibly non-zero entries by x, L and U are of the form:

L =

















1 0 0 . . . 0 0
x 1 0 . . . 0 0
x x 1 . . . 0 0
...

...
...

. . .
...

...
x x x . . . 1 0
x x x . . . x 1

















(53)

and

U =

















x x x . . . x x

0 x x . . . x x

0 0 x . . . x x
...

...
...

. . .
...

...
0 0 0 . . . x x

0 0 0 . . . 0 x

















(54)

• A major application of the LU factorization is to solve the linear system Ax = b
by solving the two triangular systems

Ly = b and Ux = y. (55)

�
Computing the LU factorization is equivalent to applying row operations to

convert A to upper triangular form.

• Frequently we need to interchange rows during Gaussian Elimination. The pro-
cess is called pivoting. Pivoting can be expressed in terms of a permutation
matrix which is a matrix that has been obtained from the identity matrix by
permuting its rows or columns.

�
It usually is a bad idea actually to compute an inverse matrix.

Subspaces of IRn

• a subspace of IRn is a non-empty subset of IRn that is closed under addition
and scalar multiplication.
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• Examples of subspaces of IRn include

− The set {0},
− A line through the origin,

− A plane containing the origin,

− The span of any set of vectors in IRn,

− IRn itself,

− The column space of a matrix,

− the null space or kernel of a matrix.

• Suppose A is an m× n matrix. Then its column space is the span of its set of
columns. In other words,

ColA = {y : y = Ax} . (56)

It is a subspace of IRm.

• The null space or kernel of A is the set of all solutions of the homogeneous
linear system Ax = 0. In other words:

NulA = {x : Ax = 0} . (57)

It is a subspace of IRn.

• A spanning set β of a subspace H is a set of vectors in H which is such that
every vector in H can be written as a linear combination of vectors in β.

• A basis of a subspace is a linearly independent spanning set of that subspace.

• All bases of a given subspace H have the same number of vectors. That number
is the dimension of H .

• The rank of a matrix is the dimension of its column space. It equals the number
of pivots (rows or columns).

• The dimension of the column space of an m × n matrix is

dimColA = rankA (58)

The pivot columns of A form a basis of its column space.

• The dimension of the kernel of an m×n matrix A is the number of free variables
in Ax = 0. It is given by

dimNulA = n − rankA (59)

• To obtain a basis for the kernel obtain one basis vector for each free variable,
by setting that variable equal to 1 and the other free variables to zero. In each
case, compute the basic variables from the equation Ax = 0 using (reduced) row
echelon form of A.

• Any spanning set of p vectors in a p-dimensional space is linearly independent,
i.e., it’s a basis.

• Any linearly independent set of p vectors in a p-dimensional space is a spanning
set, i.e., it’s a basis.

• When expressing a vector v as a linear combination of basis vectors the coeffi-
cients of the linear combination are sometimes called the coordinates of v with
respect to the given basis.
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Chapter 3: Determinants

• Determinants are numbers associated with square matrices. Throughout these
notes let A be an n × n square matrix.

• We denote the determinant of A by |A| or detA. Note that in this context the
vertical bars do not mean absolute values.

• The determinant of a 1 × 1 matrix equals its unique entry.

• For a 2 × 2 matrix we define

det

[

a11 a12

a21 a22

]

= a11a22 − a12a21. (60)

• For n > 2 the determinant of A is defined recursively. Suppose A is an n × n
matrix where n > 2. We define Aij to be the (n − 1) × (n − 1) matrix obtained
from A by removing the i-th row and the j-th column.

• For n ≥ 2, the determinant of an n × n matrix A = [ aij ] is

detA = a11 detA11 − a12 det A12 + . . . + (−1)1+na1n detA1n

=

n
∑

j=1

(−1)1+ja1j detA1j

. (61)

�
However, a corresponding expansion gives the same numerical value for any

row or column.

• The corresponding formula is usually expressed in terms of cofactors:

Cij = (−1)i+j detAij . (62)

• The factor
(−1)i+j (63)

creates the familiar checkerboard pattern













+ − + − . . .

− + − + . . .

+ − + − . . .

− + − + . . .
...

...
...

...
. . .













(64)

• Theorem 1 on page on page 168 in the textbook gives the general formulas

detA =

n
∑

j=1

aijCij (65)

for any choice of i and

detA =

n
∑

i=1

aijCij (66)

for any choice of j.
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• There is no proof of this fact in the textbook. One way to see this, with a bit of
work, is to show that formula (61) implies that

detA =
∑

σ

sign(σ)

n
∏

i=1

aiσi
(67)

where the sum goes over all n! permutations of the set {1, 2, . . . , n} and the large
symbol π indicates the product of n factors, one from each row i, and the column
σi.

• The formula (67) is symmetric in the rows and columns, and so any row or
column can be used to compute the determinant.

• Clearly, in the cofactor expansion (65) or (66) you want to pick rows or columns
that contain many zeros.

• An extreme case of the exploitation of zero entries is provided by triangular
matrices. The determinant of a triangular matrix is the product of the
diagonal entries. (This is Theorem 2 on page 169 of the textbook.)

• The formula (67) gives the determinant as the sum of n! terms, each of which has
n factors. Computing the determinant by that formula is prohibitively expensive
even for small values on n.

• Determinants can be computed much more efficiently by row operations. The
relevant facts are contained in Theorem 3 on page 171 of the textbook:

Theorem 3. (Row Operations) Let A be a square matrix. Then

a. If a multiple of a row of A is added to another row to produce a matrix B, then

detB = detA. (68)

b. If two rows of A are interchanged to produce B then

detB = − detA. (69)

c. If one row of A is multiplied by a scalar k to produce B then

detB = k detA. (70)

• All of these statements can be proved by observing that they are true for n = 2
and then using induction based on the cofactor expansion.

Theorem 4, page 173.

s. A square matrix A is invertible if and only if

det A 6= 0. (71)

• This can be seen by reducing the matrix to row echelon form and applying
Theorem 2 on triangular matrices.

• (The Label s. indicates the position in the invertible matrix theorem.)

Theorem 5, page 174. If A is a square matrix then

detA = detAT . (72)
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• This is obvious by the fact that any row or column can be used for the compu-
tation of the determinant.

Theorem 6, page 175. If A and B are both n × n matrices then

det(AB) = detA × detB. (73)

• We saw that this is true by observing that the statement holds for elementary
matrices (those implementing row operations) and writing one of the matrices as
a product of elementary matrices and the identity matrix.

Linearity: The determinant is a linear function of each row or column sepa-
rately.

• This follows immediately from the cofactor expansion.

• Cramer’s Rule rule states that for the linear system

Ax = b (74)

the i-th entry of x is given by

xi =
|Ai(b)|
|A| (75)

where Ai(b) is the matrix formed by replacing the i-th column of A with b.

• To see that this is true let Ii be the matrix obtained from the identity matrix by
replacing the i-th column with x. Thus

Ii = [ e1 e2 . . . ei−1 x ei+1 . . . en ] (76)

Then, by the way we defined matrix multiplication,

AIi = Ai. (77)

The determinant of the product equals the product of the determinants:

|A||Ii| = |Ai|, i.e., |Ii| =
|Ai|
|A| . (78)

Moreover, by expanding about the i-th row we see that

|Ii| = xi. (79)

Cramer’s rule follows.

• In particular, Cramer’s Rule gives a formula for A−1

A−1 =
1

detA









C11 C21 . . . Cn1

C12 C22 . . . Cn2

...
...

...
C1n C2n . . . Cnn









(80)

• The matrix

adjA =









C11 C21 . . . Cn1

C12 C22 . . . Cn2

...
...

...
C1n C2n . . . Cnn









(81)

is called the adjugate of A.

�
note that the adjugate is the transpose of the matrix of cofactors!

• The determinant can be interpreted geometrically as the volume V of a paral-
lelotope defined by the columns of A:

V = | detA| (82)

where the vertical bars in this case do denote the absolute values.
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Chapter 4: Vector Spaces

• Definition: A vector space−1− is a nonempty set V of objects, called vectors,
on which are defined two operations, called addition and multiplication by
scalars (real numbers), subject to the ten axioms (or rules) listed below. The
axioms must hold for all vectors u, v, and w in V , and for all scalars c and d.

1. The sum of u and v, denoted by u+v, is in V .

2. u + v = v + u.

3. (u + v) + w = u + (v + w).

4. There is a zero vector 0 in V such that

u + 0 = u. (83)

5. For each u in V , there is a vector −u in V such that u + (−u) = 0.

6. The scalar multiple of u by c, denoted by cu, is in V .

7. c(u + v) = cu + cv.

8. (c + d)u = cu + du.

9. c(du) = (cd)u.

10. 1u = u.

• A subspace of a vector space V is a non-empty subset of V that is closed under
addition and scalar multiplication.

�
every subspace is a vector space itself.

• Examples of vector spaces:

− The primary examples of vector spaces are of course IRn and subspaces of IRn.

− The column space of a matrix.

− The null space of a matrix.

− The column space of AT (called the row space of A).

− The null space of AT , i.e., the set of all x such that

AT x = 0. (84)

− The set of all quadratic polynomials.

− The set of all polynomials of degree n

− The set of all polynomials.

− The set of all real valued functions defined on some set (domain).

− The set of all functions that are continuous on [a, b], usually denoted by C0[a, b]
or C[a, b].

− The set of all functions that are square integrable on IR:

V =

{

f :

∫ ∞

−∞

f2(x)dx < ∞
}

. (85)

− The set of all solutions of the differential equation

y′′ = k2y (86)

−1− Also called a linear space
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− The set of all m × n matrices.

− The set of all upper triangular n × n matrices.

− The set of all diagonal matrices.

− The set of all symmetric n × n matrices (those that satisfy A = AT .)

− The set of all sequences
x0, x1, x2, x3, . . . (87)

− The set of all sequences x0, x1, x2, . . . that satisfy the infinitely many equations

xn+2 − xn+1 − xn = 0, n = 0, 1, 2, . . . . (88)

− The set of all convergent sequences.

− The range of a linear transformation

− The null space of a linear transformation

�
Here are some examples of sets that are not vector spaces:

− A line or plane in IRn not containing the origin.

− The set of all triangular matrices.

− The set of all non-singular (square) matrices

− The set of all singular (square) matrices.

− The set of all sequences x0, x1, x2, . . . that satisfy the infinitely many equations

xn+2 − xn+1 − xn = 1, n = 0, 1, 2, . . . . (89)

− The set of all divergent sequences.

− The solution set of a linear system Ax = b (unless b = 0).

• A linear combination of a (finite) set of vectors is obtained by multiplying
each vector with some scalar and adding up the products.

• The span of a set of vectors is the set of all linear combinations of those vectors.

• A spanning set of a vector space is a subset of the vector space whose span
is the space.

• linear independence of a set of vectors means that the only way to get the
zero vector as a linear combination of the vectors is by picking all coefficients
equal to zero.

• A basis of a vector space is a linearly independent spanning set of the space.

• All bases of a specific vector space have the same number of elements. That
number is the dimension of the vector space.

• We saw that this is true by showing that if

[

2 1
1 2

]

is a basis with k elements than

any set of k elements is linearly dependent. To do that we expressed every vector
in the larger set in terms of the basis, and obtained a homogeneous rectangular
matrix problem that was certain to have a non-trivial solution.

• Two vector spaces V and W are isomorphic if there is a linear transformation
from V to W that is one-to-one and onto.

• Two isomorphic vector spaces have the same structure. Essentially they are
the same. They differ only in notation or interpretation. As my linear algebra
teacher said long ago, one space is painted green, the other is painted red.
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• An isomorphism is invertible!

• Given a basis {v1,v2, . . . ,vn} of V and a basis {w1,w2, . . . ,wn} of W an iso-
morphism C can be defined by

C

(

n
∑

i=1

αivi

)

=

n
∑

i=1

αiwi. (90)

• Two finite-dimensional vector spaces are isomorphic if and only if they have the
same dimension.�

In particular, all n-dimensional vector spaces are isomorphic to IRn.

• Thus in a sense the only finite dimensional vector spaces are IRn for n = 1, 2, 3, . . ..

• Suppose
[

2 1
1 2

]

= {b1,b2, . . . ,bn} (91)

is a basis of a vector space V and

x =

n
∑

i=1

αibi (92)

is a vector in V . Then the vector

[x]V =









α1

α2

...
αn









(93)

is the coordinate vector of x with respect to the basis V.

• We can convert between bases. Suppose we have three bases of IRn.

I = {e1, e2, . . . , en}
[

2 1
1 2

]

= {b1,b2, . . . ,bn}
[

4 5
10 11

]

= {c1, c2, . . . , cn}

(94)

• I is the standard basis.

• As usual, we associate the matrices

B = [b1 b2 . . . bn ]

and

C = [ c1 c2 . . . cn ]

(95)

with the bases

[

2 1
1 2

]

and

[

4 5
10 11

]

.

• B and C are square and invertible.

Math 2270-6 Notes of 4/19/19 page 23



• A vector

x =









x1

x2

...
xn









(96)

can be expressed variously as

x = [x]I = B[x][
2 1
1 2

] = C[x]c (97)

• It follows that

[x][
2 1
1 2

] = B−1x and [x][
4 5
10 11

] = C−1x. (98)

• We can convert between the bases

[

2 1
1 2

]

and

[

4 5
10 11

]

by the formulas

[x][
2 1
1 2

] = B−1C[x][
4 5
10 11

] (99)

and
[x][

4 5
10 11

] = C−1B[x][
2 1
1 2

]. (100)

• Suppose A is an m × n matrix. It defines a linear transformation

y = Ax (101)

from IRn to IRm. Suppose we want to express the same linear transform in
terms of a basis

[

2 1
1 2

]

= {b1,b2, . . . ,bn} (102)

of IRn and a basis
[

4 5
10 11

]

= {c1, c2, . . . , cm} (103)

of IRm.

• In other words, we want to find a matrix T such that

[y][
4 5
10 11

] = T [x][
2 1
1 2

] (104)

• The situation is illustrated in this “commuting diagram”:

x −→ Ax
Bx IRn −→ IRm x

x





x









y





y

x IRn −→ IRm C−1x
x −→ Tx

(105)
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• start in the lower left corner. Move to the lower right corner either by going
directly to the right, or in three steps by going up, right, and then down. We
want T to be such that in either way we get to the same vector.

• Clearly,
T = C−1AB. (106)

• By the same token,
A = CTB−1. (107)

• check the dimensions.�
In the special case that m = n and B = C we get that

T = B−1AB. (108)

• In this case A and B are said to be similar, and the formula (or the matrix B)
is called a similarity transform.

6. Eigenvalues and Eigenvectors

• Unless stated otherwise, in this section A is a real square n × n matrix.

• An eigenvector of a square (n× n) matrix A is a non-zero vector x such that

Ax = λx (109)

for some scalar λ. λ is called the eigenvalue of A corresponding to the eigen-
vector x. x is an eigenvector corresponding to the eigenvalue λ.

• The pair (λ,x) is sometimes called an eigenpair of A.

�
Note than any non-zero scalar multiple of an eigenvector is also an eigenvector,

with the same eigenvalue.

�
the main difference between linear systems and eigenvalue problems is that

eigenvalue problems are nonlinear!

• More insight can be gained by writing

Ax = λx (110)

as
Ax − λx = (A − λI)x = 0. (111)

• Any eigenvector is a non-trivial solution of the homogeneous linear system

(A − λI)x = 0. (112)

• Every eigenvector is in the nullspace of A − λI.

• Every non-zero vector in the nullspace of A − λI is an eigenvector of A.

• A square homogeneous linear system has a non-trivial solution if and only if the
coefficient matrix is singular.

�
thus λ is an eigenvalue of A if and only if A − λI is singular.
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�
Upshot: we have one more characterization of singularity. A square matrix

A is singular if and only if 0 is an eigenvalue of A. It is invertible if and only if all
eigenvalues of A are non-zero.

• Suppose xi, i = 1, . . . , m are eigenvectors corresponding to the same eigenvalue λ.
Then any (non-zero) linear combination of the eigenvectors is also an eigenvector:

A

m
∑

i=1

αixi =

n
∑

i=1

αiAxi =

n
∑

i=1

αiλxi = λ

n
∑

i=1

αixi. (113)

• Thus, if we add the zero vector to the set of eigenvectors corresponding to a
specific eigenvalue, that set is a linear space, the nullspace of A−λI. That space
is also called the eigenspace of A corresponding to λ.

• Important example: The eigenvalues of a triangular matrix are the diagonal
entries, because if A is triangular and λ is an eigenvalue then A − λI is a
triangular matrix with at least one zero entry on the diagonal. It is thus singular.

�
Row operations do not preserve eigenvalues or eigenvectors!

• A matrix is singular if and only if its determinant is zero. Thus we get the key
result:

λ is an e.v. ⇐⇒ det(A − λI) = 0. (114)

• The equation
det(A − λI) = 0. (115)

is the characteristic equation of A.

• The function f(λ) = |A−λI| is a polynomial of degree n with leading coefficient
(−1)n

• We can see this using a cofactor expansion or the formula

detA =
∑

σ

sign(σ)

n
∏

i=1

aiσi
(116)

where the sum goes over all n! permutations of the set {1, 2, . . . , n} and the large
symbol π indicates the product of n factors, one from each row i, and the column
σi.

• The polynomial
p(λ) = det(A − λI) (117)

is the characteristic polynomial of A

�
The eigenvalues of A are the roots of the characteristic polynomial.

• This means

1. There are precisely n of them, properly counting multiplicity.

2. They may be repeated.

3. They may be complex.

4. If there are complex eigenvalues then they occur in conjugate complex pairs.

• The natural way to compute eigenvalues and eigenvectors by hand proceeds in
two steps:
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1. Compute the characteristic polynomial and find its roots.

2. For each eigenvalue λ find the nullspace of A − λI.

• This works well only for small matrices with exactly known entries.

• However, the opposite process, computing roots of polynomials by computing
the eigenvalues of a suitable matrix works very well.

• For every polynomial p of degree n with leading term (−1)n there exists a matrix
A whose characteristic polynomial is p. Check:

det

























αn−1 αn−2 · · · α1 α0

1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0













− λI













= (−1)n



λn −
n−1
∑

j=0

αjλ
j



 . (118)

• Central in eigenvalue calculations is the concept of similarity.

• Definition: Two matrices A and B are similar it there is a non-singular matrix
P such that

B = P−1AP. (119)

• Similar matrices have the same eigenvalues, and their eigenvectors are related in
a straightforward way. To see this suppose that

Ax = λx (120)

and note that

B(P−1x) = P−1APP−1x = P−1λx = λ(P−1x). (121)

• In other words, the eigenvectors of B are those of A, multiplied with P−1.

• Another way to see that similar matrices have the same eigenvalues is to ob-
serve that their characteristic polynomials are the same. Using the multiplicative
property of determinants and the fact that the determinant of the inverse is the
reciprocal of the determinant of the original matrix we see

|B − λI| = |P−1AP − λP−1IP |
= |P−1(A − λI)P |
= |P−1||A − λI||P |
= |A − λI|

(122)

• Definition: A matrix is diagonalizable if it is similar to a diagonal matrix.

• In other words, A is diagonalizable if there exists a diagonal matrix D and a
non-singular matrix P such that

D = P−1AP. (123)

• This equation can be rewritten as

AP = PD. (124)
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• Suppose
P = [v1 v2 . . . vn ] (125)

and

D =













λ1 0 0 . . . 0
0 λ2 0 . . . 0
0 0 λ3 . . . 0
...

...
...

. . .
...

0 0 0 . . . λn













(126)

• Note that the equation for the i-th column in (124) is precisely the eigenvector
equation

Avi = λivi. (127)

�
A matrix is diagonalizable if and only if it has n linearly independent

eigenvectors. The similarity transform to diagonal form is the matrix of eigenvectors
and the similar diagonal matrix has the eigenvalues along the diagonal.

• A matrix that is not diagonalizable is called defective.

• A matrix is not defective if an only if it has a set of n linearly independent
eigenvectors.

�
Invertibility is unrelated to Diagonalizability.

singular invertible

defective:

[

0 1
0 0

] [

1 1
0 1

]

diagonalizable:

[

0 0
0 0

] [

1 0
0 1

]

(128)

• It is sometimes useful to be able to construct a matrix with given eigenvalues
and eigenvectors. Note that

D = P−1AP (129)

is equivalent to
A = PDP−1. (130)

Suppose you want to construct a matrix A with given eigenvalues and given
eigenvectors. Proceed as follows:

1. Collect the eigenvectors into the matrix P as before.

2. Compute P−1.

3. Compute
A = PDP−1. (131)

• It is not always possible to diagonalize a matrix. However, for all matrices A
there exists a similarity transform to its Jordan Canonical Form−2− (named
after Camille Jordan, 1838-1922).

−2− The textbook mentions the Jordan Canonical Form in a footnote on page 294.
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• The JCF is a block diagonal matrix

P−1AP =









J1 0 . . . 0
0 J2 . . . 0
...

...
. . .

...
0 0 . . . Jk









(132)

where each diagonal block is of the form

Ji =

















λi 1 0 . . . 0 0
0 λi 1 . . . 0 0
0 0 λi . . . 0 0
...

...
. . .

...
...

0 0 0 . . . λi 1
0 0 0 . . . 0 λi

















(133)

• Apart from reordering the diagonal blocks the JCF is unique.

• Each Jordan block Ji corresponds to one eigenvector with eigenvalue λi.

• A matrix is diagonalizable if and only if all of its Jordan blocks are 1 × 1.

• The algebraic multiplicity of an eigenvalue is its order as a root of the charac-
teristic polynomial. Its geometric multiplicity is the dimension of its eigenspace.

• Here is an example. Suppose the Jordan form of a matrix is given by

J =































2 1 . . . . . . . .

. 2 . . . . . . . .

. . 2 . . . . . . .

. . . 3 1 . . . . .

. . . . 3 1 . . . .

. . . . . 3 . . . .

. . . . . . 3 . . .

. . . . . . . 4 . .

. . . . . . . . 4 .

. . . . . . . . . 5































(134)

• Entries indicated by dots are zero.

• The characteristic polynomial of this matrix is

p(λ) = |J − λI| = (2 − λ)3(3 − λ)4(4 − λ)2(5 − λ). (135)

The number 2 is an eigenvalue of algebraic multiplicity 3 and geometric multiplic-
ity 2, 3 is an eigenvalue of algebraic multiplicity 4 and geometric multiplicity 2, 4
is an eigenvalue of algebraic and geometric multiplicity 2, and 5 is an eigenvalue
of algebraic and geometric multiplicity 1. The dimension of the space spanned
by all eigenvectors is the sum of the geometric multiplicities which is 7. The
matrix is defective.

• A set of eigenvectors corresponding to distinct eigenvalues is linearly independent.
(The word “distinct” means that no two of the eigenvalues are equal.)

• Recall that a matrix is diagonalizable if it has a set of n linearly independent
eigenvectors.

• Thus a matrix with distinct eigenvalues is diagonalizable.
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• This implies, for example, that the JCF can be computed only in exact arith-
metic.

• A non-diagonalizable matrix must have multiple eigenvalues.

�
The most important thing to know about complex eigenvalues is that sym-

metric real matrices don’t have any! The textbook addresses this issue in
problem 24 on page 303 (and later in chapter 7).

• But the argument is quite simple.

• For any matrix A or vector x let

AH = ĀT and xH = x̄T (136)

where the bar denotes conjugate complex.

• A complex matrix A is Hermitian−3− if

A = ĀT . (137)

• We will show that the eigenvalues of a Hermitian matrix are real.

�
Note that symmetric real matrices are special cases of Hermitian matrices.

• Suppose
Ax = λx (138)

where A = AH , and A, λ, and x are all possibly complex. Taking the conjugate
complex on both sides turns this into

xHAH = xHA = λ̄xH . (139)

Left multiplying with xH in (138) and right multiplying with x in (139) gives

xHAx = λxHx and xHAx = λ̄xHx. (140)

Thus
λxHx = λ̄xHx. (141)

This implies that λ = λ̄, i.e., λ is real.

• Gershgorin Theorem. Suppose A is an n × n matrix, and λ is one of its
eigenvalues. Then, for some i ∈ {1, 2, . . . , n}

|aii − λ| ≤
∑

j 6=i

|aij |. (142)

• In other words, every eigenvalue lies in some circle whose center is a diagonal
entry of A, and whose radius equals the sum of the absolute values of the off-
diagonal entries in that row.

• Those circles are referred to as the Gershgorin Circles.

• To see this suppose x is an eigenvector of the n×n matrix A, with corresponding
eigenvalue λ. Thus

Ax = λx. (143)

−3− named after Charles Hermite, 1822–1901.
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• Since an eigenvector is determined only up to a non-zero factor we may assume
that x is normalized such that

max
j=1,...,n

|xj | = xi = 1 (144)

for some i in {1, 2, . . . , n}. This fixes i. If there are several such indices i we pick
any particular one of them.

• The i-th component of the vector equation (144) is

n
∑

j=1

aijxj = λxi = λ. (145)

• Subtracting aiixi = aii on both sides gives the equation

λ − aii =
∑

j 6=i

aijxj (146)

• Taking absolute values on both sides, applying the triangle inequality, and ob-
serving that |xj | ≤ 1 for all j shows that λ lies in the Gershgorin Circle centered
at xi:

|λ − aii| =

∣

∣

∣

∣

∣

∣

∑

j 6=i

aijxj

∣

∣

∣

∣

∣

∣

≤
∑

j 6=i

|aijxj |

=
∑

j 6=i

|aij ||xj |

≤
∑

j 6=i

|aij |

(147)

�
It’s not true in general that every Gershgorin Circle contains an eigenvalue.

�
On the other hand, it is true that any union of k Gershgorin Circles that

does not overlap with any of the remaining Gershgorin Circles contains precisely k
eigenvalues, counting multiplicity.

6. Orthogonality and Least Squares

• The inner product, previously called the dot product, of two vectors u and
v in IRn, is defined to be

u • v = uTv = [u1 u2 . . . un ]









v1

v2

...
vn









=

n
∑

i=1

uivi. (148)

• Theorem 1, p. 333. Let u, v and w be vectors in IRn, and c be a scalar. Then

a. u • v = v • u

b. (u + v) •w = u • w + v • w
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c. (cu) • v = c(u • v)

d. u • u ≥ 0, and u • u = 0 =⇒ u = 0.

• The length or norm−4− of a vector v is defined by

‖v‖ =
√

v • v. (149)

• Definition: Two vectors u and v are orthogonal (or perpendicular) if

u • v = 0. (150)

�
the zero vector is orthogonal to all vectors in IRn.

• Suppose W is a subspace of IRn. Then the set

W⊥ = {z : z is orthogonal to all vectors in W} (151)

is a linear space, called the orthogonal complement of W .

• W⊥ is read as ”W-perpendicular” or, more commonly, just ”W-perp”.

• Example: line and plane in IR3.

• Theorem 3, p. 337: Let A be an m× n matrix. The orthogonal complement of
the row space of A is the null space of A, and the orthogonal complement of the
column space of A is the null space of AT

(RowA)⊥ = Nul and (ColA)⊥ = NulAT . (152)

• A set of vectors {u1,u2, . . . ,up} from IRn is an orthogonal set if each pair of
distinct vectors from that set is orthogonal, i.e.,

i 6= j =⇒ ui • uj = 0. (153)

• Theorem 4, p. 340, textbook. If

S = {u1,u2, . . . ,up} (154)

is an orthogonal set of nonzero vectors in IRn, then S is linearly independent.
(Hence S is a basis of span(S).)

• Naturally, an orthogonal basis for a subspace W of IRn is a basis for W that
is also an orthogonal set.

• Orthogonal Bases are nice! You can compute coefficients without solving a linear
system.

• Suppose
B = {u1,u2, . . . ,up} (155)

is a basis of a subspace W of IRn,

B = [u1,u2, . . . ,up ] , (156)

−4− also called Standard Norm, Euclidean Norm, or 2-norm.
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and y is a vector in W . Then, in general, computing the coordinate vector

[y]B =









c1

c2

...
cp









(157)

of y requires the solution of the linear system

B[y]B = y. (158)

• However, if B is an orthogonal basis we can compute the components of [y]B
directly:

cj =
y • uj

uj • uj

. (159)

• Theorem 6, p. 345. An m× n matrix U has orthonormal columns if and only
if

UT U = I (160)

(where I is the n × n identity matrix.).

• Theorem 7, p. 345. Let U be an m×n matrix with orthonormal columns, and
let x and y be vectors in IRn. Then:

a. ‖Ux‖ = ‖x‖
b. (Ux) • (Uy) = x • y

c. (Ux) • (Uy) = 0 if and only if x • y = 0

• The Pythagorean Theorem states that

‖u± v‖2 = ‖u‖2 + ‖v‖2 ⇐⇒ u • v = 0. (161)

• The orthogonal projection of a vector v onto a vector u is given by

proj
u
v =

u • v

uu
u. (162)

• Theorem 8. Let W be a subspace of IRn. Then each y in IRn can be written
uniquely in the form

y = ŷ + z (163)

where ŷ is in W and z is in W⊥.

• This is the orthogonal Decomposition theorem. The vector ŷ in (163) is
called the orthogonal projection of y onto W .

• The textbook uses the notation

ŷ = projWy. (164)

• Best Approximation Theorem (Theorem 9, p. 352) Let W be a subspace of
IRn, let y be any vector in IRn, and let ŷ be the orthogonal projection of y onto
W . Then ŷ is the closest point W to y, in the sense that

‖y − v‖ < ‖y − ŷ‖ (165)

for all v in W distinct from ŷ.
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• Theorem 10, p. 353. If {u1,u2, . . . ,up} is an orthonormal basis for a subspace
W of IRn, then

ŷ = projWy =

p
∑

i=1

(y • ui)ui. (166)

If U = [u1 u)2 . . .up ], then

projW y = UUTy (167)

for all y in IRn.

• We considered three versions of the Gram-Schmidt Process.

• Version 1: is described by Theorem 11, page 357, textbook: Given a basis

{x1,x2, . . . ,xp} (168)

for a non-zero subspace W of IRn, define

v1 = x1

v2 = x2 −
x2 • v1

v1 • v1

v1

v3 = x3 −
x3 • v1

v1 • v1

v1 −
x3 • v2

v2 • v2

v2

...

vp = xp − xp • v1

v1 • v1

v1 −
xp • v2

v2 • v2

v2 − . . . − xp • vp−1

vp−1 • vp−1

vp−1

(169)

Then {v1, . . . ,vp} is an orthogonal basis for W . In addition,

span {v1, . . . ,vk} = span {x1, . . . ,xk} for k = 1, 2, . . . , p. (170)

• Version 2 is just a more compact notation for the process. For k = 1, . . . , p define

vk = xk −
k−1
∑

i=1

xk • vi

vi • vi

vi. (171)

• Version 3 combines normalization with orthogonalization: For k = 1, . . . , p define















wk = xk −
k−1
∑

i=1

(xk • vi)vi

vk = wk

‖wk‖

(172)

• Definition: A square matrix Q is orthogonal if its columns form an orthonor-
mal set.

• This means that
QT Q = I, (173)

i.e., Q is invertible, and
Q−1 = QT . (174)

(see textbook, page 346.)
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• Theorem 12, page 359, textbook. If A is and m × n matrix with linearly
independent columns, then A can be factored a

A = QR (175)

where Q is an m×n matrix whose columns form an orthonormal basis for Col(A)
and R is an n × n upper triangular invertible matrix with positive entries on its
diagonal.

• Suppose we have an overdetermined linear system

Ax = b (176)

• Here A is m × n, x is in IRn, b is in IRm, and m ≥ n (and typically, m > n).

• Usually, the system (176) will not have a solution. In that case, the next best
thing is to solve the alternative problem

‖Ax − b‖ = min (177)

• In other words (the words of our textbook), we want to find a vector x̂ in IRn

such that
‖b− Ax̂‖ ≤ ‖b− Ax‖ (178)

for all x in IRn.

• The textbook calls such an x̂ a Least Squares Solution of

Ax = b. (179)

• I would call it a solution of

‖Ax− b‖ = min . (180)

• First: Theorem 13 (p. 363) The set of least square solutions of Ax = b coincides
with the nonempty set of solutions of the normal equations

AT Ax = AT b. (181)

• Theorem 14 (p. 365) Let A be an m× n matrix. The following statements are
logically equivalent. (This means they are either all true or all false):

a. The equation Ax = b has a unique least squares solution for each b in IRm.

b. The columns of A are linearly independent.

c. The matrix AT A is invertible.

• Suppose we write

A = QR (182)

where

Q = (

n m − n

m Q1 Q2 ) (183)

is orthogonal and

R =

(

n

n R1

m − n 0

)

(184)
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with R1 being upper triangular.

• Earlier we discussed how to obtain

A = Q1R1, (185)

for example by the Gram-Schmidt Process.

• To get Q from Q1 we simply add vectors to the orthonormal basis of the column
space of A to get an orthonormal bass of IRm.

• We won’t actually need Q2, but it’s useful to describe the idea.

• A significant property of an orthogonal matrix is that multiplying with it does
not alter the norm of a vector:

‖Qx‖2 = (Qx)T (Qx) = xT QT Qx = xT x = ‖x‖2. (186)

• Using
A = QR and QT A = R (187)

we obtain
‖Ax − b‖2 = ‖QT (Ax − b)‖2

= ‖QT Ax − QT b‖2

=

∥

∥

∥

∥

(

R1x

0

)

−
(

QT
1 b

QT
2 b

)∥

∥

∥

∥

2

=
∥

∥R1x − QT
1 b
∥

∥

2
+
∥

∥QT
2 b
∥

∥

2
.

(188)

• Of the two terms on the right we have no control over the second, and we can
render the first one zero by solving (the square triangular n × n linear system)

R1x = QT
1 b. (189)

• Definition (p. 378, textbook): An inner product on a vector space V is a
function that, to each pair of vectors u and v in V , associates a real number
< u,v > and satisfies the following axioms, for all vectors u and v in V and all
scalars c:

1. < u,v >=< v,u >.

2. < u + v,w >=< u,w > + < v,w >

3. < cu,v >= c < u,v >

4. < u,u >≥ 0 and < u,u >= 0 if and only if u = 0.

• A Vector space with an inner product is called an inner product space.

• The Cauchy-Schwarz Inequality says

| < u,v > | ≤ ‖u‖‖v‖ (190)

• The triangle inequality says

‖u + v‖ ≤ ‖u‖ + ‖v‖. (191)

• One major application of inner product spaces is weighted least squares.
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• The underlying space is IRn and the inner product is

< x,y >=

n
∑

i=1

wixiyi (192)

where the wi are given positive weights.

• The normal equations for the weighted Least Squares Solution of

Ax = b (193)

are
AT WAx = AT Wb. (194)

• Another major example is Fourier Series. The underlying linear space is the
set of 2π periodic functions that are square integrable over an interval of length
2π.

• The underlying inner product is

< f, g >=

∫ π

−π

f(t)g(t)dt. (195)

• The Fourier series of a 2π-periodic function f is

f(t) =
a0

2
+

∞
∑

n=1

an cos(nt) + bn sin(nt) (196)

where the Fourier coefficients are given by

an =
< f, cos(nt) >

π
=

∫ π

−π
f(t) cos(nt)dt

π

bn =
< f, sin(nt) >

π
=

∫ π

−π
f(t) sin(nt)dt

π

(197)

Ch.7 — Symmetric Matrices and Quadratic Forms

• Throughout this chapter A is a square real matrix.

• A matrix A is symmetric if
A = AT (198)

• This concept of symmetry applies only to square matrices.

• Two matrices A and B are orthogonally similar if there is an orthogonal
matrix P such that

B = P−1AP = PT AP. (199)

• A matrix A is orthogonally diagonalizable if it is orthogonally similar to
a real diagonal matrix D. Thus if A is orthogonally diagonalizable then there
exists an orthogonal matrix P such that

D = P−1AP = PT AP. (200)
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• This implies that A is symmetric since

A = PDPT (201)

• So if A is orthogonally diagonalizable then it is symmetric.

• The converse also holds: If A is symmetric then it is orthogonally diagonalizable.

• In class we saw a cool proof by induction of why this is true.

• We also proved the Spectral Theorem for Symmetric Matrices An n × n
symmetric matrix A has the following properties:

a. A has n real eigenvalues, counting multiplicities.

b. The dimension of the eigenspace λ equals the multiplicity of λ as a root of the
characteristic equation.

c. The eigenspace are mutually orthogonal, in the sense that eigenvectors corre-
sponding different eigenvalues are orthogonal.

d. A is orthogonally diagonalizable.

�
Put a little more simply: As far as the eigenvalue problem, symmetric

matrices are as nice as can be.

• Definition: A quadratic form on IRn is a function Q defined on IRn whose
value at a vector x in IRn can be computed by an expression of the form

Q(x) = xT Ax (202)

where A is an n × n symmetric matrix. The matrix A is called the matrix of
the quadratic form.

• In terms of the entries of A and x the quadratic form is given by

Q(x) = xT Ax =

n
∑

i=1

n
∑

j=1

aijxixj . (203)

• The Principal Axes Theorem. Let A be an n × n symmetric matrix. Then
there is an orthogonal change of variables, x = Py, that transforms the quadratic
form into a quadratic form

yT Dy (204)

with no cross product terms.

• Note that saying “with not cross product terms” is equivalent to saying that D
is diagonal. We’ve seen of course, that P is the matrix of eigenvectors, and D is
the diagonal matrix of eigenvalues.

• A quadratic form Q = xT Ax, and its matrix A, is

a. positive definite if all eigenvalues are positive

b. negative definite if all eigenvalues are negative if

c. indefinite if some eigenvalues are positive and some are negative

d. positive semidefinite if all eigenvalues are non-negative
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e. negative semidefinite if all eigenvalues are non-positive

�
A scalar function f of a vector variable x assumes a minimum value at a

point x̂ if
∇f(x̂) = 0 and ∇2f(x̂) is positive defineite (205)

• It assumes a maximum value if

∇f(x̂) = 0 and ∇2f(x̂) is negative defineite (206)

• It has a saddle point at x̂ if ∇2f is indefinite at x̂.

• If ∇2f(x) is indefinite the second derivative test in inconclusive.

�
Positive Definiteness is the right generalization of the positivity of numbers.

• The minimum value of a quadratic form xT Ax over all unit vectors x is the
minimum eigenvalue of A.

• The maximum value of a quadratic form xT Ax over all unit vectors x is the
maximum eigenvalue of A.

• Applying the method of Lagrange multipliers to the constrained problem

xT Ax = min where xTx = 1 (207)

leads directly to the eigenvector equation

Ax = λx. (208)

• The Singular Value Decomposition of an m × n matrix A (where we assume for
simplicity that m ≥ n) is

A = UΣV T (209)

where

• U is m × m orthogonal, i.e., U−1 = UT ,

• V is n × n orthogonal, i.e., V −1 = V T , and

• Σ is m × n diagonal. Specifically,

Σ =























σ1 0 . . . 0
0 σ2 . . . 0
...

...
. . .

...
0 0 . . . σn

0 0 . . . 0
...

...
...

0 0 . . . 0























(210)

where
σ1 ≥ σ2 ≥ . . . ≥ σn ≥ 0. (211)

• Using the SVD we can reduce many problems to a problem of the same type,
but with A replaced with Σ.
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• Our list included:

1. Computing the rank of A

2. Computing the determinant of A (provided A is square).

3. Finding all solutions of the linear system Ax = b.

4. Solving the Least Square problem ‖Ax − b‖ = min.

• The transformation from problems involving A to problems involving Σ, and vice
versa, can all be obtained by multiplying with orthogonal matrices which does
not amplify errors.

• We also learned how to approximate A by a sum of rank 1 matrices, which has
applications, for example, in image compression.

• We also discussed how to compute the SVD, at least in principle.

• The singular values are the square roots of the eigenvalues of AAT or AT A.

• The left singular vectors (the columns of U) are the eigenvectors of AAT

• The right singular vectors (the columns of V ) are the eigenvectors of AT A.

• We also looked at the textbook procedure for compute the SVD.

• The actual procedure used, for example, in matlab is vastly more complicated.
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