Math 2270-1

Notes of 11/19/19

Announcements

6. Orthogonality and Least Squares

e The inner product, previously called the
dot product, of two vectors u and v in R",
is defined to be

U1
T v2 -
uev =u'v=1_[u; Uz ... Up]| . :E U; ;.
i=1
L Uy,

(1)

e Theorem 1, p. 333. Let u, v and w be
vectors in IR™, and ¢ be a scalar. Then

a. uev=veu
b. (u+v)ew=uew-+vew

c. (cu)ev=c(uev)

d. ueu>0, and uveu=0=—7u=0.

e The length or norm~!'~ of a vector v is de-

fined by
v = Vv, (2)

1= also called Standard Norm, Euclidean Norm,
or 2-norm.
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Definition: Two vectors u and v are orthog-
onal (or perpendicular) if

uev =0. (3)

@ the zero vector is orthogonal to all vectors
in R".

Suppose W is a subspace of R". Then the set

W+ = {z : z is orthogonal to all vectors in W}

(4)
is a linear space, called the orthogonal com-
plement of W.

W+ is read as ”W-perpendicular” or, more
commonly, just ” W-perp”.

Example: line and plane in R®.

Theorem 3, p. 337: Let A be an m X n ma-
trix. The orthogonal complement of the row
space of A is the null space of A, and the or-
thogonal complement of the column space of
A is the null space of AT

(RowA)™ = Nul4d and (ColA)* = NulA”.
(5)

A set of vectors {uj,ug,...,u,} from R" is
an orthogonal set if each pair of distinct
vectors from that set is orthogonal, i.e.,

i#j = u;eu; =0. (6)
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e Theorem 4, p. 340, textbook. If

S ={u,uy,...,u,} (7)

is an orthogonal set of nonzero vectors in
IR", then S is linearly independent. (Hence S
is a basis of span(.5).)

e Naturally, an orthogonal basis for a sub-
space W of IR" is a basis for W that is also
an orthogonal set.

e Orthogonal Bases are nice! You can compute
coefficients without solving a linear system.

e Suppose
B ={uj,ug,...,u,} (8)
is a basis of a subspace W of R",
B =[uj,uy,...,u,], (9)

and y is a vector in W. Then, in general,
computing the coordinate vector

C1
C2

ylB=| . (10)

_cp |

of y requires the solution of the linear system

Blylg =vy- (11)
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e However, if B is an orthogonal basis we can
compute the components of [y]g directly:

yeu,
=2 12
Cj u; e u, (12)

e Theorem 6, p. 345. An m x n matrix U
has orthonormal columns if and only if

Ul =1 (13)
(where I is the n x n identity matrix.).

e Theorem 7, p. 345. Let U be an m x n
matrix with orthonormal columns, and let x
and y be vectors in R". Then:

a. [Ux] = ||
b. (Ux)e (Uy)=xey
c. (Ux)e(Uy)=0 ifandonlyif xey =20
e The Pythagorean Theorem states that
Jutvl® = Ju? + V] = uev=0,
(14)
e The orthogonal projection of a vector v
onto a vector u is given by

uev

proj,v = u. (15)

uu

e Theorem 8. Let W be a subspace of IR".
Then each y in IR™ can be written uniquely
in the form

y=y+z (16)

Math 2270-1 Notes of 11/19/19 page 4



where y is in W and z is in W+.

e This is the orthogonal Decomposition the-
orem. The vector y in (16) is called the or-_
thogonal projection of y onto V. W

n
e The textbook uses the notation Y;

Yy = Projyy. (17)

e Best Approximation Theorem (Theorem
9, p. 352) Let W be a subspace of R", let y be
any vector in IR", and let y be the orthogonal
projection of y onto W. Then y is the closest
point W to y, in the sense that

7
ly = vl&lly -3l (18)
for all v in W distinct from y.

e Theorem 10, p. 353. If {uj,uy,...,u,} is
an orthonormal basis for a subspace W of R",
then

p
Yy = projyy = Z(y o u;)u,. (19)
i=1
fU=[u u)2 ...up],then
projyy = UU"y (20)
for all y in R".

e We considered three versions of the Gram-
Schmidt Process.
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e Version 1: is described by Theorem 11, page X1 -7,

357, textbook: Given a basis ‘/)
{x1,%x2,...,%,} (21);(2
for a non-zero subspace W of R", define X, =V
Vi = X1 (\
B Xo ® V1 Xz, v =7
Vo = X9 — \'Al Vev ! - &y
Viev) 0 Y
X3 ®Vy X3 ® Vo
V3 = X3 — Vi — V2
Vi eVvy Vo @V
Xy, ®V] Xy, ®Vo Xp®Vy, 1
Vp = Xp — P Vi — P Vo — ... — P P Vp—1
VeV Vo @ Vo Vp—10Vy_1
(22)
Then {vi,...,v,} is an orthogonal basis for

W. In addition,

span{vy,..., v} =span{xy,...,xx} for k=1,2,... p.
(23)

e Version 2 is just a more compact notation for
the process. For k =1,...,p define

k—1
Vi — Xk —ZXk.VZVi. (24)

; VvV, eV;
=1

e Version 3 combines normalization with orthog-

onalization: For k = 1,...,p define
( k—1
W, = X — Z(Xk, oV,;)V;
\ i=1 (25)
_ Wi
vV =
CF Wl
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Spa/u( {X,, --‘/5((} = fP‘W { Vie---7 Ué%
é‘; 4‘2;"'/'f5
e Definition: A square matrix () is orthogonal
if its columns form an orthonormal set.

e This means that

Q'Q=1, (26)
i.e., Q is invertible, and
Q' =Q". (27)

(see textbook, page 346.)

e Theorem 12, page 359, textbook. If A is
angl m X n matrix with linearly independent
columns, then A can be factored a

A=QR (28)

where () is an m X n matrix whose columns
form an orthonormal basis for Col(A) and R
is an n X n upper triangular invertible matrix
with positive entries on its diagonal.

e Suppose we have an overdetermined linear sys-
tem

Ax=Db (29)
e Here Aism xn, xisin R", b is in R™, and
m > n (and typically, m > n).

e Usually, the system (29) will not have a solu-
tion. In that case, the next best thing is to
solve the alternative problem

|Ax — b|| = min (30)
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In other words (the words of our textbook),
we want to find a vector x in IR" such that

b — Ax[| < ||b — Ax| (31)

)

for all x in R". 7&

The textbook calls such an x a Least Squares
Solution of

Ax =b. (32)

I would call it a solution of

|Ax — b|| = min. (33)

First: Theorem 13 (p. 363) The set of least
square solutions of Ax = b coincides with
the nonempty set of solutions of the normal
equations

AT Ax = A™b. (34)

Theorem 14 (p. 365) Let A be an m xn ma-
trix. The following statements are logically
equivalent. (This means they are either all
true or all false):

. The equation Ax = b has a unique least squares

solution for each b in IR™.
. The columns of A are linearly independent.

. The matrix AT A is invertible.

Math 2270-1 Notes of 11/19/19 page 8




e Suppose we write

‘ A=QR ‘ (35)

where
n m-—n

Q=m (Q1 Q2 ) (36)

is orthogonal and

i (B)

with Rq being upper triangular.

e Earlier we discussed how to obtain
A=QRy, (38)

for example by the Gram-Schmidt Process.

e To get Q from ()1 we simply add vectors to
the orthonormal basis of the column space of
A to get an orthonormal bass of R™.

e We won’t actually need (), but it’s useful to
describe the idea.

e A significant property of an orthogonal matrix
is that multiplying with it does not alter the
norm of a vector:

1Qz|* = (Qz)"(Qx) = 2" Q" Qz = 2w = [|=|*.
(39)
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e Using
A=QR and QTA=R (40)
we obtain
|Az —0|* = |Q" (Az — b)|I”

= [|Q" Az — Q" b||?

(%) - (&)
0 QTb

2 2

— || Rz~ QFe| + [ @Fb]
(41)

2

e Of the two terms on the right we have no con-
trol over the second, and we can render the
first one zero by solving (the square triangu-
lar n x n linear system)

e Definition (p. 378, textbook): An inner
product on a vector space V is a function
that, to each pair of vectors u and v in V', as-
sociates a real number < u,v > and satisfies
the following axioms, for all vectors u and v
in V' and all scalars c:

<u,v>=<v,u>.
<u+v,w>=<u,w>-+ <V, W >
<cu,v>=c<uv>

<u,u>>0 and < u,u>=0if and only
if u=0.

A
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e A Vector space with an inner product is called
an inner product space.

e The Cauchy-Schwarz Inequality says

[ <u,v > | < lulffv] (43)

e The triangle inequality says

a4 v < ffall + [Jv]]. (44)

e One major application of inner product spaces
is weighted least squares.

e The underlying space is R" and the inner
product is

<X,y >= Z W;T3Y; (45)
i=1

where the w; are given positive weights.

| 4

e The normal equations for the weighted Least

Squares Solution of <)C' 3) = 4 ﬁ*)jlk)t[.\/
a
Ax=Db (46)
are
ATW Ax = ATWhb. (47)

e Another major example is Fourier Series.
The underlying linear space is the set of 27
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periodic functions that are square integrable
over an interval of length 27.

e The underlying inner product is

<fo>= [ fwema @

e The Fourier series of a 2m-periodic function f
is

f(t) = a2_0 + Z a, cos(nt) + b, sin(nt) (49)

n=1

where the Fourier coefficients are given by

4 = < f,cos(nt) > f f(t) cos(nt)d?
o < f,sin(nt) > f f(t) sin(nt)dt
7T s (50)

T 01
[ Zf 9
f cCos Mh{f = fTSMM vcosut d +
w ( .
sl fde = =27 =T
Q - 2
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