
Math 2270-1

Notes of 10/22/2019

Determinants Revisited

• Recall that the determinant of a 2× 2 matrix
is defined by
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• For n > 2 we have the recursive cofactor ex-
pansion

detA =

n
∑

j=1

(−1)i+j|Aij|

where Aij is the (n − 1) × (n − 1) submatrix
of A obtained by removing the i-th row and
the j-th column from A.

• Observe that applying this definition gives the
determinant as a sum of products of n entries
of A. Each product has one factor from each
row and each column.

• For example, for n = 3 we get
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= a11a22a33 − a11a23a32 − a12a21a33

+ a12a23a31 + a13a21a32 − a13a22a31

(1)
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• The pattern continues. For our purposes the
important thing is that the determinant is a
sum of (signed) products of matrix entries,
where each column and each row contributes
one factor.

• However, as an aside, I mention that one can
write down a formula for the determinant in
terms of permutations. A permutation σ of
the sequence

1, 2, . . . , n

is simply a rearrangement

{σ1, σ2, . . . , σn}

of the sequence. For example, there are six
permutations of the set {1, 2, 3} given in the
table:

σ signσ

{1, 2, 3} +1
{1, 3, 2} −1
{2, 1, 3} −1
{2, 3, 1} +1
{3, 1, 2} +1
{3, 2, 1} −1

• To obtain the sign of the permutation con-
sider the number of transpositions, i.e., in-
terchanges of neighboring elements, required
to obtain the permutation. If that number is
even the sign is plus 1, if the number is odd
the sign is -1. For example, the sign of the
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last permutation is -1 because we can get the
permutation with three transpositions:

{1, 2, 3} −→ {1, 3, 2} −→ {3, 1, 2} −→ 3, 2, 1.

• With these notions one can define the deter-
minant in the more symmetric way as

detA =
∑

σ

sign(σ)

n
∏

i=1

aiσi
(2)

where the sum goes over all n! permutations
of the set {1, 2, . . . , n} and the large symbol
π indicates the product of n factors, one from
each row i, and the column σi.

• Note that this formula matches the expres-
sions we got for n = 2 and n = 3.
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5.2 The Characteristic Equation

• throughout A is a square, n × n, matrix.

• Recall: a non-zero vector x is an eigenvec-
tor of A with corresponding eigenvalue λ if

Ax = λx.

• λ is an eigenvalue of A if and only if there
is a non-zero solution x of the homogeneous
system

(A − λI)x = 0.

• This is the case if and only if

det(A − λI) = 0.

• That equation is the characteristic equa-
tion of A.

• What kind of function is A − λI?

• We obtain the determinant as a sum of prod-
ucts of entries of A − λI, one from each row
and column. The diagonal entries are aii −λ,
the other entries are scalar.

• Thus we obtain a polynomial in λ.

• Each term in the sum has at most n factors
that are from the diagonal, so the degree of
that polynomial cannot exceed n
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• Moreover, there is exactly one term that
has all n diagonal entries. It is

(a11−λ)(a22−λ) . . . (ann−λ) = (−λ)n +r(λ)

where r(λ) is a polynomial of degree n − 1.

• You don’t need the formula (2) to see this, it
follows for example by using the cofactor ex-
pansion recursively, and expanding each co-
factor about the first row.

• The upshot of this is that the determinant
of A − λI is a polynomial of degree n, with
leading term (−λ)n.

• The polynomial

p(λ) = det(A − λI)

is the characteristic polynomial of A

�
Significantly, the leading coefficient of

the characteristic polynomial, i.e., (−1)n, is non-
zero.�

The eigenvalues of A are the roots of the
characteristic polynomial.

• What do we know about the roots of a poly-
nomial of exact degree n?
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1. There are precisely n of them.

2. They may be repeated.

3. They may be complex.

4. If there are complex roots they occur in con-
jugate complex pairs.

• Example

A =

[

1 2
3 4

]
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• Eigenvalues of a real matrix may be complex!?

• really?

• yes, consider

A =

[

1 1
−1 1

]
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• The natural way to compute eigenvalues and
eigenvectors by hand proceeds in two steps:

1. Compute the characteristic polynomial and
find its roots.

2. For each eigenvalue λ find the nullspace of
A − λI.

• This works well only for small matrices with
exactly known entries.

• The reason for this is that the coefficients
of the characteristic polynomial can be com-
puted only approximately in inexact arith-
metic, and the roots of a polynomial are ex-
tremely sensitive with respect to small changes
in the coefficients.

• There is also a theoretical obstacle: In gen-
eral, the roots of a polynomial can be ex-
pressed explicitly in terms of radicals only of
the degree of the polynomial does not exceed
four.

• Evariste Galois, 1811–132.

• For a discussion of computational methods
for eigenvalue/vector calculations take Math
5600 or (preferably) 5610.

• On the other hand, computing the roots of
a polynomial by computing the eigenvalues of
its companion matrix, using modern software,
works very well!
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The companion matrix

• Actually, for every polynomial p of degree n
with leading term (−1)n there exists a ma-
trix A whose characteristic polynomial is p.
Check:
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• To see this expand the determinant of

A−λI =
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by cofactors about the first row.
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Similarity

• Definition: Two matrices A and B are sim-
ilar it there is a non-singular matrix P such
that

B = P−1AP.

• Similar matrices have the same eigenvalues,
and their eigenvectors are related in a straight-
forward way. To see this suppose that

Ax = λx

and note that

B(P−1x) = P−1APP−1x = P−1λx = λ(P−1x).

• In other words, the eigenvectors of B are those
of A, multiplied with P−1.

• Another way to see that similar matrices have
the same eigenvalues is to observe that their
characteristic polynomials are the same. Us-
ing the multiplicative property of determinants
and the fact that the determinant of the in-
verse is the reciprocal of the determinant of
the original matrix we see

|B − λI| = |P−1AP − λP−1IP |

= |P−1(A − λI)P |

= |P−1||A − λI||P |

= |A − λI|

• We will have to look at this more closely to-
morrow.
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