Math 2270-6 ~ j
o iffe ]
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e Tying up loose end from yesterday. Suppose
A=la; as ... a,]

is m X n and m¥N i yxin - . .
A — QR 62 62 - axu /0[&4""7{1

where
Q=1 g2 ... qn]

i1s m X n with orthonormal columns and R is
n X n upper triangular.

e Then the first £ columns of A span the same
space as the first £ columns of Q).

e In principle, () can be computed by applying
the Gram-Schmidt process to the columns of

A.

e Since
QTQ — In

with I,, being the n x n identity matrix we
can compute R by

R =QTA.
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6.5 Least Squares Problems

e We start with a somewhat elaborate exam-
ple. You may have seen it before in Calcu-
lus, and we’ll use Calculus notation. Then we
will generalize it, turn it into a Linear Algebra
Problems, and change the notation to Linear
Algebra notation.

e On your calculator there may be a “linear re-
gression” button.

e What does it do?

e It computes a line that approximates a set
of specified points in an optimal sense. The
points may represent, for example, inaccu-
rately measured values.

e Suppose we are given the points (2,2), (5,5),
and (7,5). There is no line that passes through
all three points, but we can represent them
approximately by a line, as shown in Figure 1.

e How do we find that line?

e We use three points in this example for com-
putational simplicity, there could be many more
points!

e Lets present our line as
y=L(z)=mz+b

as usual.

e The key idea is to minimize the sum of squares:
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Figure 1. 3 points and a line.

F(m,b) = (2—(2m+0b))’
+ (5= (Bm+b)’ (1)
+ (5—(7m+b))2 = min

e Thus we want to minimize a function of two
variables. In Calculus we learned that the way
to do is to compute the gradient, set it to zero,
and then solve the resulting system.
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VF = [FFT((Q;))] = 0.

e In our case, since we are minimizing a sum of
squares, we will get a linear system.

e We could expand the squares in (1) and then
differentiate, or differentiate first. The second
approach is better. We get

F(m,b) = —=2(2—(2m+b)) x 2
— 2(5—(5m+b)) x5
— 2(5—(Tm+1b)) x7 = 0

—2[2X245X5+5XT—m(2x2+5X54+7xT)—b(24+5+7)] = 0.

This becomes

78m + 14b = 64. (2)
e similarly,
Fy(m,b) = —2(2—(2m+b))
2(5 — (5m + b))
—  2(5—(Tm+1b)) = 0

ie.,
—2(2X245x5+5XT—m(2x2+5x5+Tx7)—b(2+5+7)] = 0.
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This gives the equation

14m, + 3b = 12 (3)

e The equations (2) and (3) are two linear equa-
tions in the 2 unknowns m and b. Solving
them gives

12 2
m=— and b= —0
19 19

e The points and the line

1220
Y= 19" " 19

are shown in Figure 1.

e We might be given hundreds of points. The
calculation just indicated would become quite
tedious. So let’s do the problem in general.

e Suppose we are given n points (z;,y;), i =
1,...,n.

e We want to find m and b such that

Yyi =~ mx; + b, i=1,...,n (4)

e To that end we pick m and b so as to minimize

n

F(m,b) = Z (yi — (ma; + b))2 = min.
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e As usual we compute the partial derivatives
and set them equal to zero:

%F(m, b) = —2; (yz — (mx; + b))azz =0
and
2Fmb —22 (mz; + b)) =0
0b ’

e Dividing by -2, distributing the sums, and col-
lecting the m and b terms on one side and the
constant terms on the other side gives the lin-
ear system

mZ?:lﬂf? + bzyzlxi = Z?:lxiyi

mZ?:lfvz' + bZ?zll = Z?:lyi

e This is the linear system your calculator solves
when you press the linear regression button.

e In our previous example we have the data

i Yiq
2 2
5 5
7 5
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and get

Sa? = 22 + 52 4 72 = 78
Yo, = 24547 = 14
1 = I1+141 = 3
Z:Uiyi = 2X245xXxbH+7TxH = 64
Yy = 24545 = 12
which leads to the same linear system
8m + 14b = 64
14m + 3b = 12

as before.

e Of course, instead of a linear function you
could use a quadratic function. You'll get 3
equations in 3 unknowns.

e The concept we discussed is much more gen-
eral. You could consider polynomials of de-
gree greater than 2 or even non-polynomial
functions.

e Let’s take a different tack. Suppose all the
points actually are on the lines. Then we
would have the equations

yi=mx;+b, i=1...,n  (9)

e We can write this as the linear system

V4 N

A4 X = b L& MNAx -5l = e
ESEN [ Y1 ]
4p) 1 m Y2
InEk
Lz, 1] | Y,
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e However, minimizing the sum of squares of
the difference between the left and right sides
of the equations (5) in this case gives the Least
Squares Problem

ESY il

Ty 1 [m] Y2 .
, — | . — min
. b .

Lz, 1] L Y,

e Also notice that the previously obtained lin-

ear system
n 2 n n
my % o+ b D ie1 Tili

m Z?:l L b Z?:l 1 Z?:l Yi

can be rewritten in terms of our matrix nota-
tion as

AT A= AT

_|_

1 1_T Cx1 17 X1 1-T [ Y1 |
Ty 1 o 1 m Ty 1 Y2
: S I N :
lz, 11 Lz, 1. Lz, 11 Ly,-
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Least Squares in (GGeneral

e Let’s take a fresh start (and also make a change
in notation). Suppose we have an overdeter-
mined linear system

Ax=Db (6)

e Here Aism xn, xisin R", b is in R™, and
m > n (and typically, m > n).

e Usually, the system (6) will not have a solu-
tion. In that case, the next best thing is to
solve the alternative problem

2
|Ax — b|| = min

e In other words (the words of our textbook),
we want to find a vector x in IR" such that

Ib — Ax[| < [[b — Ax||

for all x in IR".

e The textbook calls such an X a Least Squares
Solution of

Ax = b.
e | would call it a solution of
|Ax — b|| = min.
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@ We will soon see that = is unique if the
columns of A are linearly independent.

First: Theorem 13 (p. 363) The set of least
square solutions of Ax = b coincides with
the nonempty set of solutions of the normal
equations

AT Ax = A™b.

Before seeing why this is true, let’s go back to
our introductory example.

There
2 1 2
A=15 1 and b= 1|5
7 1 5
We get
T |78 14| |m| |64
AT Ax = [14 3|0~ |12
This is the same set of equations as before,

with the same solution.

So let’s see why Theorem 14 is true
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[. Cw([u(u,g/ exevelSe b

A My 6‘/4x 00[ A
= iAx *@/Phj
/4}( =5 /;2% j Ase
Mo~ 4sclf =aeciee
/1: [}1,(“**,@&I’ x

| Ax )= e

AL
NVoruma( Bgueg+ ‘,&@
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e We can tell more than Theorem 13!

e Theorem 14 (p. 365) Let A be an m xn ma-
trix. The following statements are logically
equivalent. (This means they are either all
true or all false):

a. The equation Ax = b has a unique least square
solution for each b in R™.

b. The columns of A are linearly independent.

c. The matrix AT A is invertible.
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Using the QR factorization

R‘«C?TA' /4; QR G mxnm
M MM orthogonal
R
/[4:(—6/(2 = e R:[O\]
R'a =T
_ R, nxn wppy triwogitor
Qs [e @
L,L ] B,

e As [& Q [&R«L(,‘z:j [QRJ
[Sj
):a 4y - J [61, Ay Aney 1 m

ey /lz; ((Qs(),/(éb(\ - KTQTQ;( =

T
i < [ Aoty = 16T (A2
(| @A -@'hlf
U Re-aTE

LT
NI ERAE
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