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In his paper [13], Thurston shows that a positive real number h is
the topological entropy for an ergodic traintrack representative of
an outer automorphism of a free group if and only if its expansion
constant λ = eh is a weak Perron number. This is a powerful re-
sult, answering a question analogous to one regarding surfaces and
stretch factors of pseudo-Anosov homeomorphisms. However, much
of the machinery used to prove this seminal theorem on traintrack
maps is contained in the part of Thurston’s paper on the entropy of
postcritically finite interval maps and the proof is difficult to parse.
In this expository paper, we modernize Thurston’s approach, fill in
gaps in the original paper, and distill Thurston’s methods to give a
cohesive proof of the traintrack theorem. Of particular note is the
addition of a proof of ergodicity of the traintrack representatives,
which was missing in Thurston’s paper.
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1. Introduction

Topological entropy describes the complexity of the orbit structure of a
dynamical system, and is an invariant of topological conjugacy classes. A
classical problem in dynamics is to characterize the numbers that can arise
as the topological entropy for a particular family of dynamical systems. In his
paper [13], Thurston proved that a positive real number h is the topological
entropy of a postcritically finite self-map of the unit interval if and only if
λ = eh is a weak Perron number, i.e., λ is an algebraic integer that is at
least as large as the absolute value of any conjugate of λ. He uses the tools
developed for studying interval maps to then prove the following theorem
about outer automorphisms of free groups, answering a prominent question
in geometric group theory.

Theorem 1.1 ([13, Theorem 1.9]). A positive real number h is the topo-
logical entropy for an ergodic traintrack representative of an outer automor-
phism of a free group if and only if λ = eh is an algebraic integer that is at
least as large as the absolute value of any conjugate of λ, i.e., λ is a weak
Perron number.

Unfortunately, Thurston fell ill while writing a draft of the manuscript
[13], and there are some gaps in the final version of the paper. In this ex-
pository article, we modernize Thurston’s approach, fill in gaps in the orig-
inal paper, and distill Thurston’s methods to give a cohesive proof of the
traintrack theorem that is especially readable for geometric group theorists.
Though the motivation for the proof of Theorem 1.1 comes from the dy-
namics of postcritically finite interval maps, we exclude details about such
maps below since the purpose of this paper is to give a complete and concise
proof of Thurston’s traintrack theorem.

To understand the content of Theorem 1.1, recall that for a finitely gen-
erated free group Fn, the outer automorphism group of Fn is Out(Fn) =
Aut(Fn)/ Inn(Fn). Bestvina and Handel [3, Theorem 1.7] showed that cer-
tain outer automorphism of a free group can be represented by a special map
between graphs called a traintrack map (see [4, Chapter 6.3]). Roughly, a
traintrack map is a continuous graph map which has particularly nice can-
cellation properties with respect to iterations. A traintrack map f : Γ → Γ
is called irreducible if f does not admit an invariant proper subgraph which
is not a tree. We formally define and give all relevant background on train-
track maps in Section 2.5. The notion of irreducibility is compatible with
that of ergodicity of the traintrack map. In particular, the map being ergodic
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Thurston’s theorem: entropy in dimension one 129

as a dynamical system essentially means the system cannot be reduced or
factored into smaller components, which in this case would be proper sub-
graphs. Thus, ergodicity of the traintrack map implies irreducibility.

Since their introduction, traintrack maps have become a standard tool
for understanding the geometry and dynamics of automorphisms of free
groups. It is also easy to calculate the expansion constant of a traintrack map
since traintrack maps eliminate backtracking when iteratively applying the
map to an edge or edge path. In fact, the expansion constant of the traintrack
map f can be calculated by finding the Perron-Frobenius eigenvalue, λ, of
the transition matrix for f . The topological entropy of f is then exactly
log(λ). See Section 2.2, Section 2.3, and [3, Remark 1.8] for more details.

Thus, one direction of Theorem 1.1 follows almost immediately from
Theorem 2.3 (the Perron-Frobenius Theorem). In particular, an ergodic
traintrack representative of an outer automorphism of a free group has a
transition matrix with a positive leading eigenvalue λ that is not smaller
than the magnitude of the other eigenvalues (see the last paragraph of Sec-
tion 2.3). Therefore, the entropy of the traintrack map is h(f) = log(λ) and
eh = λ is a weak Perron number as desired. Proving the other direction is
far more difficult, but we provide a sketch of Thurston’s (and our) argument
here.

Fix a Perron number λ, i.e. an algebraic integer that is strictly larger
than the absolute value of its conjugates. Thurston uses two main ingredi-
ents to construct a traintrack map with growth rate λ. First, he defines a
collection of prototype traintrack maps εn for all odd, positive integers n.
Second, he defines a star map on a star graph that is uniformly λ-expanding,
called fλ below. (For the definition of star graphs and star maps, see Sec-
tion 3.1; these are called asterisk maps on asterisk graphs in [13].) This is
a delicate process that requires an understanding of the arithmetic of Per-
ron numbers. In fact, there is a somewhat serious number theoretic error in
the version of Lemma 2.15 (The Even Lemma) that appears in Thurston’s
paper [13, p.359, proof of Theorem 6.2]. We correct this error and correct
the construction of the star maps accordingly (see Remark 2.16 and Sec-
tion 3.3 respectively). It was noted by the referee that Richard Webb and
his reading group at Cambridge were also aware of the error and how to fix
the argument.

Next, given the star map fλ : Γ → Γ, Thurston defines the split graph
S(Γ) and the split map S(fλ) : S(Γ) → S(Γ), which are defined using both
the prototype traintrack maps εn and the λ-expanding star map fλ. The
desired traintrack map for Theorem 1.1 is S(fλ), and the definition of split
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130 Dickmann et al.

maps ensures that the expansion constant of S(fλ) is λ because the expan-
sion constant of fλ is λ. It then remains to show that the traintrack map
actually represents an outer automorphism of a free group, and that the
map S(fλ) is in fact ergodic. Unfortunately, the details on these two points
are sparse in Thurston’s paper and we remedy this as described in the next
paragraph. Finally, to extend the results to weak Perron numbers, Thurston
uses the fact that for a weak Perron number λ, there exists N ∈ Z+ such
that λN is Perron.

The main contributions of this expository paper are as follows. First and
foremost, we distill and streamline all of the pieces needed for Thurston’s
traintrack theorem from [13], which contains a variety of additional theorems
regarding interval maps and other topics. Second, we correct the number
theoretic error in the Even Lemma mentioned above. Third, we add a proof
of the ergodicity of the traintrack maps, which was completely missing in
Thurston’s paper. Finally, we use Stallings folds to thoroughly prove that the
traintrack maps represent elements of Out(Fn). For this last piece, Thurston
outlines an algebraic argument, but provides only a few details. We found
the argument using Stallings folds more straightforward and rigorous.

We conclude with some remarks. First, the notion of traintrack maps for
Out(Fn) is motivated by Thurston’s traintracks on surfaces. In particular,
elements of Out(Fn) that admit traintrack representatives are the analog of
pseudo-Anosov homeomorphisms of surfaces, and expansion constants for
these maps are the analog of stretch factors for pseudo-Anosovs. Despite
the fact that traintrack theory for free groups is more complicated than
for surfaces, Thurston gave a complete answer for which algebraic integers
can arise as expansion constants for traintrack representatives of outer auto-
morphisms. Thurston also showed that, for surfaces, every stretch factor of a
pseudo-Anosov homeomorphism is an algebraic unit, but it is still unknown
exactly which units can appear as stretch factors. There has been partial
progress in this direction. For example, Fried [5, Theorem 1] proved every
stretch factor λ of a pseudo-Anosov homeomorphism is a bi-Perron unit.
Fried further conjectured [5, Problem 2] that every bi-Perron unit has some
power such that it is realized as a stretch factor of a pseudo-Anosov home-
omorphism. The work of Pankau [11] and Liechti–Pankau [6] made some
progress towards the conjecture, but the question is still far from resolved.

In the surface case, the stretch factors for a pseudo-Anosov homeomor-
phism and its inverse are always equal. This is no longer the case for outer
automorphisms of Fn. See [3, Remark p.9] for an example of this. In [13],
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Thurston’s theorem: entropy in dimension one 131

Thurston asks the question: Which pairs of numbers can appear as the ex-
pansion constants of an outer automorphism and its inverse? He gives a par-
tial answer when one restricts to the class of bipositive outer automorphisms,
but he notes that his result cannot generalize to all outer automorphisms.
He also conjectures that every pair of weak Perron numbers greater than 1
is a pair of expansion constants for an outer automorphism and its inverse.
We are not aware of a proof of this claim in the literature as of this mo-
ment, but a proof of this claim would be a good first step towards answering
Thurston’s question. For the sake of brevity, we do not discuss this portion
of Thurston’s paper and direct interested readers to [13, Section 11 & 12].

1.1. Outline of paper

In Section 2 we provide all relevant background on entropy, λ-expanding
graph maps, traintrack structures, Stallings folds, and Perron numbers, in
that order. In Section 3, we define star maps and use the geometry of Per-
ron numbers to construct uniformly λ-expanding star maps for all Perron
and weak Perron numbers λ. In Section 4, we define Thurston’s prototype
traintrack maps εn and prove that they are indeed homotopy equivalences
so that they represent elements of Out(Fn). Then, in Section 5, we define
split graphs, split maps, and prove that our split star maps are traintrack
representatives of elements of Out(Fn). Finally, in Section 6, we prove that
the split star maps are ergodic and finish the proof of Theorem 1.1.

2. Background

Thurston uses a variety of tools from dynamics, geometric group theory, and
algebraic number theory throughout his proof of Theorem 1.1. All relevant
background material on these three topics is given in this section.

2.1. Entropy

The value of the topological entropy describes the complexity of the orbit
structure of a dynamical system, and is an invariant of topological conju-
gacy classes. Let (X, d) be a compact metric space, and let f : X → X be a
continuous map. For n ≥ 1, set

dn(x, y) := max
0→j→n−1

d(f j(x), f j(y)).
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Denote by Bn
ε (x) the open ε-ball {y ∈ X | dn(x, y) < ε} with respect to dn.

Since X is a compact space, for each ε > 0, X can be covered by a finite
collection of open sets of the form Bn

ε (xi) for xi ∈ X. Then, let N(ε, n) be
the minimum number of such open sets that cover X.

Definition 2.1. Let f : X → X be a continuous map on a compact metric
space X. The topological entropy h(f) is

h(f) = lim
ε→0

lim sup
n→∞

1

n
log(N(ε, n)).

2.2. Graph Maps and Entropy

Now, we turn our attention to the category of graphs. A graph Γ is a 1-
dimensional CW complex, whose 0-simplices are called the vertices, and
whose 1-simplices are called the edges. We will always assume our graphs
have finitely many vertices and edges. If a graph is given an orientation on
each of the edges (a choice of left and right endpoints), then it is called an
directed graph.

A graph map f : Γ1 → Γ2 between graphs is a continuous map that
sends vertices to vertices and edges to edge paths.

Endowing the edges of a graph with lengths produces a metric graph.
With a metric, the length of any edge path can be measured as the sum of
the lengths of edges in the path. Namely, this induces a length function $
on the set of edge paths in the graph. A typical choice of such a metric is
the combinatorial metric: the metric that gives every edge length 1.

For a given metric graph Γ with a length function $, we define the total
variation of a graph map f : Γ → Γ as:

Var(f) =
∑

e∈E(Γ)

$(f(e)),

where E(Γ) denotes the set of edges of Γ.
Computing the topological entropy for a graph map is simple due to

the 1-dimensionality of the graph, and we will use the following theorem to
compute the entropy of graph maps throughout the paper.

Theorem 2.2 ([1]). Let f : Γ → Γ be a graph map on a finite metric graph
that has finitely many points at which f is not a local homeomorphism. Then

h(f) = lim
n→∞

1

n
log(Var(fn)).
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Thurston’s theorem: entropy in dimension one 133

2.3. Perron-Frobenius Theorem

Thurston’s argument uses the following form of the well-known Perron-
Frobenius theorem. We say a matrix is nonnegative (or positive) when its
entries are nonnegative (or positive, respectively). A nonnegative matrix is
said to be ergodic if the sum of a finite number of its consecutive positive
powers is a positive matrix. A nonnegative matrix is said to be mixing if
some power is a positive matrix. These two notions describe that the dy-
namics on a space will not decompose into subspaces that have independent
dynamics. Mixing is stronger than ergodicity; a mixing map exhibits more
uniform orbit dynamics. We note that Thurston uses the definition of er-
godicity above.

However, in the literature, this definition of ergodicity is commonly re-
ferred to as irreducible. What we defined as mixing is also commonly referred
to as primitive, see for instance [7], definitions 4.2.2 and 4.5.7.

Theorem 2.3 (Perron-Frobenius). Let M be an n× n matrix with in-
teger entries. If M is nonnegative, then M has at least one eigenvector such
that

(i) The corresponding eigenvalue λ is nonnegative.

(ii) λ ≥ |λi| for all the other eigenvalues λi.

Furthermore, if M is ergodic, there is a unique eigenvector whose corre-
sponding eigenvalue λ is strictly positive.

To use the Perron-Frobenius theorem in our setting, we relate a (self)
graph map f with the transition matrix M , defined as follows. Enumerate
the edges of Γ by positive integers, say 1, . . . , n. Then the transition matrix
of f : Γ → Γ is an n× n integer matrix, whose (i, j) entry is determined by
the number of times the i-th edges appear in the edge path f(j). In light of
the definitions of ergodic and mixing matrices, we call a graph map ergodic
(or mixing) if its transition matrix is ergodic (or mixing, respectively).

Perron-Frobenius implies that an ergodic graph map f : Γ → Γ has a
transition matrix with a positive leading eigenvalue λ that is no smaller
than the magnitude of the other eigenvalues. Therefore, Var(fn) ∼ λn and it
follows that h(f) = limn→∞

1
n log(Var(fn)) = log(λ) by Theorem 2.2. This

proves the forward direction of Theorem 1.1 since, as we will discuss in
Section 2.5, a traintrack representative of an outer automorphism of a free
group is a special case of a graph map.
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2.4. Uniform λ-Expanders

Definition 2.4. Let λ > 0 be an algebraic integer. Let Γ be a metric graph,
and $ be a length function on the edge paths in Γ. We say f is uniformly
λ-expanding if every edge is scaled by the same factor λ; namely, $(f(e)) =
λ$(e) for every edge e of Γ.

Throughout the paper, we construct many maps of this form while work-
ing towards the main theorem due to the following useful proposition.

Proposition 2.5. Let λ be an algebraic integer and f be a uniformly λ-
expanding graph map on a finite metric graph. Then h(f) = log λ.

Proof. Let f : Γ → Γ and $ denote the length function on Γ. Observe that
Var(f) = λ$(Γ), and more generally Var(fn) = λn$(Γ). Using Theorem 2.2,
we compute

h(f) = lim
n→∞

1

n
log(Var(fn)) = log(λ) + lim

n→∞

1

n
log($(Γ)) = log(λ).

!

2.5. Traintrack Structures

Now, we will describe the necessary background required to understand the
statement of Theorem 1.1. The celebrated work of Bestvina and Handel [3]
gives a geometric approach to understanding Out(Fn), the outer automor-
phism group of a finitely generated free group Fn. See [2, 4] and for a general
introduction to Out(Fn) and traintrack maps. Recall

Out(G) = Aut(G)/ Inn(G),

where Aut(G) is the group of automorphisms and Inn(G) is the group of
inner automorphisms of G, i.e., the subgroup of Aut(G) consisting of auto-
morphisms of the type ϕ : x &→ gxg−1 for g ∈ G.

Bestvina and Handel [3, Theorem 1.7] showed that certain outer au-
tomorphism can be represented by a special map between graphs called a
traintrack map (see also [4, Chapter 6.3]), which we now define.

A graph map is taut if it restricts to a local embedding on the inte-
rior of each edge. The term taut was chosen to represent the fact that all
backtracking in the graph map has been removed. Indeed, any graph map
is homotopic to a taut graph map.
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A self-graph map f : Γ → Γ that is also a homotopy equivalence induces
an automorphism of the fundamental group, which is well-defined up to
postcomposing an inner automorphism depending on the choice of path
connecting base points. The fundamental group of a graph is Fn for some n,
so the map f corresponds to an element ψ ∈ Out(Fn). The notion of tautness
of a graph map is analogous to cyclically reduced words in free groups.

The standard topology on the intervals descends to a topology on the
graph. Consider a small closed neighborhood of a vertex in a directed graph,
which we can view as a directed graph itself. The oriented edges in this
neighborhood are called directions. Formally, a turn in the graph is a 2-
element subset of directions from a single vertex. More intuitively, we can
think of a turn as a segment of a path passing through the vertex. In an
oriented graph, we can refer to a turn with a 2-letter long word, where an
uppercase letter represents traversing an edge backward. For example, the
turn bA will refer to the turn a path makes after first traveling along the
edge b in the forward direction followed by a in the reverse direction. Note
that reversing the order of the word and swapping the case of the letters
gives the same turn, but now the path representing the turn is traveling in
the opposite direction; e.g., aB is the same turn as bA. In either case, we
say that the path takes the given turn. In general, a locally embedded path
takes a turn at every vertex it crosses, and the turn is determined by the
incoming and outgoing edges the path takes at a given vertex.

Now we partition the set of turns into two collections, a set of legal turns
and a set of illegal turns. We will always assume that every backtracking,
a turn of the form xX, is illegal. Such a partition is called a traintrack
structure on Γ. A path is legal if it is a local embedding, and it takes a
legal turn at each vertex on the path. A path is illegal if it is not legal.
Note a graph map sends a turn to another turn, so we have the following
definition.

Definition 2.6. A graph map f : Γ → Γ is a traintrack map when it is
taut and there exists a traintrack structure on Γ such that

(i) legal turns are sent to legal turns, and

(ii) every edge is sent to a legal path.

The conditions (i) and (ii) together imply that legal paths are sent to
legal paths under a traintrack map. Thurston defines a traintrack map to be
a map of a graph such that all iterates are local embeddings on each edge.
The fact that legal paths are sent to legal paths shows that our definition
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implies Thurston’s. A traintrack map f : Γ → Γ is called irreducible if f
does not admit an invariant proper subgraph that is not a tree.

a

d

bc

a

d

bc

Figure 1: Left: A graph with labeled oriented edges. Right: A traintrack
structure on the graph with legal turns da, dA, Dc, DB, bc, and cb.

A traintrack structure on a graph is often graphically represented by
blowing up each vertex to a disk. Then, for each legal turn, we draw a
smooth path within the corresponding disk, which connects the endpoints
of edges from the legal turn. The legal turns then correspond to turns which
an actual train could make traveling along a track modeled after the picture,
i.e., avoiding sharp turns. See Figure 1 for an example. In the given traintrack
structure from Figure 1, no legal path can travel along the a edge in either
direction twice in succession (the turn aa is illegal), nor can it travel along
d immediately after traveling along c in the forward direction (the turn cd
is illegal), etc.

2.6. Stallings Folds

In Section 4 and Section 5, we will make use of Stallings folds, first introduced
in [12], to verify that our graph maps are homotopy equivalences. Note that
this differs from Thurston’s approach in the original proof of Lemma 4.1.
We felt that using Stallings folds was more intuitive for a rigorous proof.
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Thurston’s theorem: entropy in dimension one 137

Definition 2.7. A morphism of graphs is a continuous map of graphs
that sends vertices to vertices and edges to edges. An immersion of graphs
is a morphism that is locally injective.

Note that a morphism of graphs is different from a graph map since
we require only that edges be sent to edge-paths for graph maps. Beginning
with a graph map, we can subdivide the edges of the domain graph at the
complete pre-image of the vertices of the codomain graph in order to obtain
a graph morphism in the style of Stallings. Note that the property of a
morphism being an immersion needs only to be checked at the vertices of
the domain.

Definition 2.8. Let Γ be a graph and x1, x2 be two edges of Γ sharing
a vertex. Let Γ′ = Γ/(x1 ∼ x2). A fold is the natural quotient morphism
Γ → Γ′.

Folds come in two flavors depending on whether the two edges x1, x2
share a single vertex or share both vertices. Folds between edges that share
only a single vertex are called Type I folds and are homotopy equivalences.
Folds between edges that share both vertices are Type II folds and fail to
be homotopy equivalences (they reduce the rank of the fundamental group
by one). See Figure 2 for examples of Type I and Type II folds.

x1

x2

x1 = x2

x1

x2

x1 = x2

Type I Type II

Figure 2: Examples of Type I and Type II folds.
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Theorem 2.9 ([12]). Let ε : Γ → ∆ be a graph morphism. Then ε factors
as

Γ = Γ0
F1−→ Γ1

F2−→ · · · Fn−→ Γn
ψ−→ ∆,

where each of the Fi are folds and ψ is an immersion.

This theorem gives an algorithm for verifying that a given graph map
is a homotopy equivalence: First, one subdivides the domain in order to
obtain a graph morphism. Then, one performs all possible folds. If all of
the folds performed are Type I folds and the final immersion, ψ, is a home-
omorphism(or, equivalently, graph isomorphism), then the original map is
a homotopy equivalence. In fact, for our applications, we will always only
perform Type I folds, and ψ will be a graph automorphism.

2.7. Perron Numbers

In this section, we compile relevant definitions and facts in algebraic number
theory, toward the introduction of Perron numbers.

Definition 2.10. An algebraic integer is a complex number that is a
root of some monic polynomial with integer coefficients. A polynomial with
integer coefficients is also called an integer polynomial.

Given an algebraic integer φ, the minimal polynomial pα of φ is the
integer monic polynomial of the least degree that has φ as a root. Then the
degree of φ denoted by degφ, is the degree of its minimal polynomial pα.
The Galois conjugates, sometimes simply called the conjugates, of φ are
the other roots of pα.

Definition 2.11. A weak Perron number is a real algebraic integer
λ = λ1, whose Galois conjugates λ2, . . . ,λd have modulus no larger than λ:

λ ≥ |λi|, for all i = 1, . . . , d.

A (strong) Perron number is a real algebraic integer λ = λ1 that
satisfies the strict inequality for the moduli of Galois conjugates λ2, . . . ,λd,
namely:

λ > |λi|, for all i = 2, . . . , d.

The following fact will be used in Section 6 to expand our result on
Perron numbers to weak Perron numbers.
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Proposition 2.12 ([8, Theorem 3]). Let λ be an algebraic integer. Then
λ is weak Perron if and only if λn is Perron for some positive integer n.

Now let λ be a Perron number. Denote by Q(λ) the number field that
is the smallest field extension over Q containing λ. As λ is an algebraic
integer, we have Q(λ) = Q[x]/(pλ). Note degQ(λ) = deg λ. Let Oλ be the
ring of integers in the field Q(λ), defined as the set of all algebraic integers
in Q(λ). Then, the ring of integers will be realized as a submodule of the
number field with exactly deg λ basis elements:

Fact 2.13 ([9, Theorem 9, pp.20–21]). If Q(λ) is a number field of
degree d, then its ring of integers Oλ is a free Z-submodule of Q(λ) of rank
d. In other words, there are d elements φ1, . . . ,φd ∈ Oλ such that

Oλ = {m1φ1 + . . .+mdφd | m1, . . . ,md ∈ Z}.

Remark 2.14. For an algebraic integer µ of degree d, Z[µ] ⊂ Oµ will also
be a rank d submodule of Q(µ), but Z[µ] may not be maximal in the sense
that, for some µ, the containment is proper Z[µ] ! Oµ.

For example, when µ =
⇒
5, then Oµ = Z

[

1+
√
5

2

]

as 5 ≡ 1 mod 4. (refer

to [9, Chapter 2, Corollary 2]). This properly contains Z[
⇒
5] and both of

these are rank-2 submodules of Q[
⇒
5]. Even when λ is a Perron number, for

example take λ = 1 +
⇒
5, it is possible that Z[λ] ! Oλ. Additionally, there

are many examples where Oλ += Z[µ] for every algebraic integer µ ∈ Oλ. (For
an example, refer to [10, pp 64–65].) Such are said to be non-monogenic.

For Section 3.3, we need the following lemma.

Lemma 2.15 (Even Lemma). Let λ be an algebraic integer. Then, there
exist n += n0 ∈ Z+ such that

λn ≡ λn0 mod 2Oλ.

Proof. Since Oλ/2Oλ
∼= (Z/2Z)d is finite, by the pigeonhole principle there

must be some n += n0 ∈ Z+ for which λn ≡ λn0 mod 2Oλ.
!

Remark 2.16 (Counterexample for n0 = 0). In [13], Thurston stated
the Even Lemma with n0 = 0, but that statement is false in general. Indeed,
consider λ = 3+

√
17

2 . This is a degree 2 Perron number with minimal polyno-
mial pλ(x) = x2 − 3x− 2. Because 17 ≡ 1 mod 4, Oλ = Z[λ]. We can write
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the basis elements 1,λ ∈ Z[λ] = Oλ as ordered pairs with respect to the basis
for Q(λ) = Q2 = 〈1,λ〉; that is Z[λ] = 〈1,λ〉 = 〈(1, 0), (0, 1)〉.

We claim that there is no n ∈ Z+ for which λn ≡ 1 = (1, 0) mod 2Oλ,
where here 2Oλ = 〈(2, 0), (0, 2)〉. In fact, we assert that λn ≡ (0, 1)
mod 2Oλ for all n ∈ Z+. Using the relationship given from the minimal
polynomial λ2 = 3λ+ 2, we see that this is true for the first few powers of
λ:

λ1 = (0, 1) +≡ (1, 0) mod 2Oλ,

λ2 = (2, 3) ≡ (0, 1) +≡ (1, 0) mod 2Oλ,

λ3 = (6, 11) ≡ (0, 1) +≡ (1, 0) mod 2Oλ.

More generally, as we will see in Lemma 3.5, the multiplication by λ on an
element inQ(λ) ⊃ Oλ can be realized as the multiplication by the companion

matrix Cλ =

(

0 2
1 3

)

on the corresponding ordered pair written as a column

vector. It follows inductively that for n > 1:

λn = Cλ · λn−1 ≡
(

0 2
1 3

)(

0
1

)

=

(

2
3

)

≡
(

0
1

)

mod 2Oλ,

thus λn ≡ (0, 1) +≡ (1, 0) mod 2Oλ for all n ∈ Z+.

3. Star Maps

3.1. Definition of a Star Map

Definition 3.1. A star (referred to as an asterisk graph in [13]) with n-tips
is the complete bipartite graph ∗n = K1,n.

∗3 ∗4 ∗5

. . .

∗n

A star map is a self graph map of a star, f : ∗n → ∗n such that:
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(a) f fixes the center vertex (in this way f preserves the bipartite structure
of ∗n), and

(b) the map that sends each edge to the first edge of its image is a per-
mutation. We will refer to this map as the first edge map.

We note that a star map can always be homotoped to be taut. Namely,
the image of each edge can be reduced by canceling back-tracking, only leav-
ing the last letter. However, we will let our star maps have back-trackings,
and will not pass to a simpler representative in its homotopy class. Such
redundancy will be crucial when we are defining the split of a star map in
Section 5.

Example 3.2. Let f : ∗3 → ∗3 be the star map defined by:

a

b c

f :










a &→ cCb

b &→ bBa

c &→ aAbBc

Since f maps each edge in ∗3 to an edge path of odd (unsigned) length, it
must fix the center vertex. Also, letting f1 be the first edge map, we have
that Im(f1) = {a, b, c}. Thus, f is a star map.

This section aims to prove the existence of a uniformly λ-expanding star
map for every Perron number λ.

Theorem 3.3 ([13, Theorem 6.2], Uniformly Expanding Star Maps
for Perron Numbers). Let λ be a Perron number. Then there exists n > 0
and a star map f : ∗n → ∗n such that f is a uniform λ-expander with mixing
transition matrix.

Example 3.4. The following is an example of a star map that satisfies
Theorem 3.3. Suppose λ = 5. Consider the star graph ∗4 and endow each
edge with length 1. Let f : ∗4 → ∗4 be defined by

For the author's personal use only.

For the author's personal use only.



!

!

“4-Patel” — 2024/8/14 — 15:40 — page 142 — #16
!

!

!

!

!

!

142 Dickmann et al.

a
b

c
d

f :























a &→ bBdDb

b &→ aAcCc

c &→ dDbBa

d &→ cCbBd

We see that f is a star map since the first edge map f1 permutes the edges
(a → b → a and c → d → c),

and f respects the bipartite structure since it maps each edge to an edge
path of odd length. Furthermore, f is a 5-uniform expander since $(f(e)) =
5 = 5$(e) for all edges e.

It is straightforward to check that the cube of the transition matrix
is positive, so f is mixing. This example can easily be generalized to a
construction for λ equal to any odd integer.

3.2. Geometry of Perron Numbers

Let λ be a Perron number with deg λ = d. In this section, we will study the
dynamics of λ-multiplication on Q(λ).

Viewing Q(λ) as a d-dimensional Q-vector space, we extend scalars by
tensoring Q(λ) with R:

Vλ := Q(λ)⊗Q R ∼= Rd,

where the latter isomorphism comes from realizing Q(λ) as a d-dimensional
Q-vector space with basis 1,λ, . . . ,λd−1. Then, we have an isomorphism:

Vλ = Q(λ)⊗Q R −→ Rd,
d−1
∑

i=0

(λi ⊗Q ri) &−→ (r0, . . . , rd−1).

Using this identification, we can view a number q ∈ Q(λ) as a d-
dimensional column vector q ∈ Vλ. Namely, with the basis {1,λ, . . . ,λd−1}
of Q(λ), write q =

∑d−1
i=0 (λ

i · qi) ∈ Q(λ) with qi ∈ Q for all i = 0, . . . , d− 1.
Then q corresponds to a d-dimensional column vector q = [q0, . . . , qd−1]t in
Vλ.

Now we convert the λ-multiplication action on Q(λ) into matrix mul-
tiplication by the companion matrix, Cλ, of λ on the corresponding vector
space Vλ ∼= Rd. Recall the companion matrix Cµ of an algebraic integer
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µ of degree d is the d× d matrix:

Cµ =















0 0 · · · 0 −c0
1 0 · · · 0 −c1
0 1 · · · 0 −c2
...

...
. . .

...
...

0 0 · · · 1 −cd−1















where the ci’s are the integer coefficients of the minimal polynomial of µ;
pµ(x) = c0 + c1x+ . . .+ cd−1xd−1 + xd.

Lemma 3.5. Let λ be an algebraic integer, and q ∈ Q(λ). Then λ · q ∈ Q(λ)
corresponds to Cλ · q ∈ Vλ, where Cλ is the companion matrix of λ.

Proof. Let deg λ = d with the minimal polynomial pλ(x) = c0 + c1x+ . . .+
cd−1xd−1 + xd. Since pλ(λ) = 0, we have

λd =
d−1
∑

i=0

−ciλ
i.

Writing q ∈ Q(λ) as
∑d−1

i=0 (λ
i · qi) for qi ∈ Q, we identify q with q =

[q0, . . . , qd−1]t in Vλ. Now

λ · q = λ
d−1
∑

i=0

(λi · qi) =



d−2
∑

i=0

(λi+1 · qi)

}

+ λd · qd−1

=



d−1
∑

i=1

λi · qi−1

}

+
d−1
∑

i=0

(−ciλ
i) · qd−1

= −c0qd−1 · λ0 +
d−1
∑

i=1

(qi−1 − ciqd−1) · λi,

where the last line can be identified with the matrix product:














0 0 · · · 0 −c0
1 0 · · · 0 −c1
0 1 · · · 0 −c2
...

...
. . .

...
...

0 0 · · · 1 −cd−1





























q0
q1
q2
...

qd−1















= Cλq,

concluding the proof. !
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Given Lemma 3.5, we will interchangeably use Cλ-action and λ-action
by identifying λ · q ∈ Q(λ) and Cλ · q ∈ Vλ.

Next, we find a subset of Vλ that is invariant under Cλ-multiplication.
As this is a linear action, the natural choice of such a subset is an eigenspace
of Cλ. However, as λ is a Perron number, we can find a more useful invariant
space Kλ as follows. First, by definition of the companion matrix, the mini-
mal polynomial of Cλ is exactly the minimal polynomial pλ of λ. Since any
finite extension over Q is separable, pλ has no repeating roots. Hence, we can
enumerate the eigenvectors of Cλ as v1, . . . , vd, where v1 is associated with
the leading eigenvalue λ. Normalize v1, . . . , vd to have norm 1. Each v ∈ Vλ
can be expressed as v = a1v1 + . . .+ advd for some ai ∈ R. Now define the
invariant open cone Kλ as follows:

Kλ := {a1v1 + . . .+ advd ∈ Vλ | a1 > 0, a1 > |ai|, for all i = 2, . . . , d}.

Namely,Kλ is the set of all points in Vλ whose projection to the λ-eigenspace
of Cλ is positive and larger than the size of projection to any of the other
eigenspaces.

Note Kλ is polyhedral, namely, the cone is generated by finitely many
vectors in Vλ. Indeed, the 2(d− 1) bisectors, {v1 ± vi}di=2, will generate Kλ.
We label these by {w1, . . . , w2d−2} in the remainder of this section. Note
that on each of these bisectors, the projections onto either v1 or vi have the
same magnitude. See Figure 3 for Kλ with d = 2.

v2 v1

v1 − v2

v1 + v2

Kλ

Figure 3: v1 ± v2 generate Kλ when d = 2.

The fact that λ is Perron makes Kλ invariant under Cλ multiplication.
Moreover, we have the proper containment Cλ ·Kλ ! Kλ. To see why, let
v = a1v1 + . . .+ advd, with λi being the associated eigenvalue corresponding
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to the eigenvector vi for i = 1, . . . , d. Note λ1 = λ. Then,

Cλ · v = a1λ1v1 + . . .+ adλdvd.

Because λ is Perron, we have that |λ1| > |λi| for all i = 2, . . . , d. Therefore,

|a1λ1| > |aiλi|, for all i = 2, . . . , d,

showing that Cλ · v ⊂ Kλ. To see that the containment is proper, it suffices
to show that the faces of Kλ get mapped to the interior of Kλ. Indeed,
let v = av1 + avi with a += 0 be a point on a face of Kλ. Then Cλ · v =
aλ1v1 + aλivi. Since |aλ1| > |aλi|, it follows that Cλ · v has strictly larger
projection on 〈v1〉 than on 〈vi〉, showing Cλ · v ∈ Kλ.

Recall by Fact 2.13, we can embed Oλ into Q(λ) ⊂ Vλ as a rank-d lattice.
In fact, we would like to trim the invariant cone Kλ to have faces passing
through such nice lattice points. Any such cone generated by vectors in the
lattice will be called rational.

Proposition 3.6 (Rational Cone; cf. [13, Proposition 3.4]). There
is a rational polyhedral convex cone KRλ contained in Kλ and containing
λ ·Kλ.

Proof. Consider the projective space P(Vλ) ∼= P(Rd). We first claim that
P(Oλ) is dense in P(Vλ). This follows from the fact that Q(λ) is dense in Vλ
and that P(Oλ) = P(Q(λ)). Indeed, by definition of the ring of integers, for
any x ∈ Q(λ) there exists m ∈ Z+ such that mx ∈ Oλ where we can pick m
to be the least common multiple of the denominators of coefficients of the
(monic and rational) minimal polynomial of x.

Recall we have the proper containment λ ·Kλ ! Kλ. Let w1, . . . , w2d−2

be the generators of the cone Kλ described above. Then λ · w1, . . . ,λ · w2d−2

are the generators of the cone λ ·Kλ where wj += λ · wj . Now, project the
generators onto P(Vλ). Note that wj and λ · wj are not identified in P(Vλ)
because here λ · wj corresponds to the vector Cλ · wj and wj = v1 ± vi, where
v1 and vi are eigenvectors for different eigenvalues of Cλ.

Thus, each geodesic segment between wj and λwj in P(Vλ) is nondegen-
erate. As P(Oλ) is dense in P(Vλ), for each j = 1, . . . , 2d− 2 we can pick
uj ∈ P(Oλ) arbitrarily close to the midpoint of the geodesic joining wj and
λwj in P(Vλ).
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w1

w2

λw1

λw2

u1

u2Kλ KRλ

λ ·Kλ

u1

u2

w1

w2

λw1

λw2

P(Vλ)

Figure 4: The figure on the left shows the choice of u1 and u2 from P(Oλ) so
that each ui lies arbitrarily close to the midpoint of the two corresponding
projections wi and λwi. This is possible as P(Oλ) is dense in P(Vλ). Such a
choice of u1 and u2 gives rise to the desired proper containment: λ ·Kλ ⊂
KRλ ⊂ Kλ, shown on the right.

Finally, let KRλ denote the closed rational polyhedral cone generated
by u1, . . . , u2d−2. Illustrated in Figure 4, by construction we have

λ ·Kλ ⊂ KRλ ⊂ Kλ,

which concludes the proof. !

Define Sλ := (Oλ ∩KRλ) \ {0}, the set of lattice points in the rational
cone KRλ in Vλ, minus the origin. Note Sλ is equipped with a semigroup
structure, as both Oλ and KRλ are closed under the addition. Now we show
it is also finitely generated.

Proposition 3.7 (Gordan’s Lemma; cf. [13, Proposition 3.5]). Sλ is
a finitely generated semigroup.

Proof. Say KRλ is generated by u1, . . . , uk ∈ Oλ constructed in the proof of
Proposition 3.6. Let H := {

∑k
i=1 aiui | ai ∈ [0, 1]} ⊂ KRλ. Since H is com-

pact and Oλ is discrete, it follows that H ∩Oλ is finite. We claim that this
finite set, which we label {s1, . . . , sm}, is the desired generating set for Sλ,
which we now show. Note that ui ∈ H ∩Oλ by taking ai = 1 and aj = 0 for
j += i. Therefore, the set {s1, . . . , sm} contains the set {u1, . . . , uk}.

Now, pick any u =
∑k

i=1 biui ∈ Sλ, where bi ∈ Q≥0 and u += 0. Then each
bi can be decomposed into an integer and non-integer part bi = ni + ri, where
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ni ∈ Z≥0 and ri ∈ [0, 1), and

u =

(

k
∑

i=1

niui

)

+

(

k
∑

i=1

riui

)

.

We aim to show that u can be written as a non-negative integer sum of
{s1, . . . , sm}. Since ui ∈ {s1, . . . , sm} for all i, the left part of the sum-
mation,

∑k
i=1 niui, is a non-negative integer sum of {s1, . . . , sm}. In ad-

dition,
∑k

i=1 riui ∈ H by definition. However, u−
∑k

i=1 niui ∈ Oλ, so that
∑k

i=1 riui ∈ H ∩Oλ. This means that
∑k

i=1 riui is one of the sj itself, which
concludes the proof. !

Proposition 3.8 (Slim Cone Lemma; cf. [13, Section 4]). Let s ∈ Sλ.
Then there exists Ns > 0 such that n ≥ Ns implies that λn · Sλ ⊂ s+ Sλ.

Proof. Since Sλ is finitely generated (Proposition 3.7), we can let Sλ =
〈s1, . . . , sm〉. To show the conclusion, it suffices to prove the following claim:

Claim 1. Fix s ∈ Sλ. For each i = 1, . . . ,m, there exists Ni > 0 such that
n ≥ Ni implies that λn · si ∈ s+ Sλ.

Claim 1 then implies the conclusion by taking Ns := max{N1, . . . , Nm}.
Then for any t = a1s1 + . . .+ amsm ∈ Sλ with ai ∈ Z≥0 for all i, it follows
that for n > Ns,

λn · t = λn ·

(

m
∑

i=1

aisi

)

=
m
∑

i=1

ai(λ
n · si) ∈ s+ Sλ

because λn · si ∈ s+ Sλ for each i and s+ Sλ is a semigroup.
To prove Claim 1, we need another claim:

Claim 2. For any s ∈ Sλ, the projection of s+KRλ surjects onto the in-
terior of P(KRλ).

Proof of Claim 2. Write s = b1s1 + . . .+ bmsm for some nonnegative inte-
gers b1, . . . , bm. Any interior point of P(KRλ) can be represented by an in-
terior point of KRλ. Let t be an interior point of KRλ. We will find t′ ∈ s+
KRλ such that t = t′. Write t = a1s1 + . . .+ amsm. Then a1, . . . , am > 0,
because t does not lie on any face of KRλ. Therefore, there exists a large R
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such that Rai > bi for every i = 1, . . . ,m. Then we claim that

Rt = Ra1s1 + . . .+Ramsm ∈ s+KRλ.

Indeed, Rt− s =
∑m

i=1(Rai − bi)si has nonnegative coefficients, so Rt− s ∈
KRλ. Therefore, Rt ∈ P(s+KRλ) and Rt = t ∈ int(P(KRλ)), as desired.

∈

Now we prove Claim 1. Note the leading eigenvector v1 is the unique
attracting fixed point in P(KRλ) under the λ-multiplication action. Claim 2
implies that v1 ∈ P(s+KRλ). Then {λn · si}n∈Z+ converges to v1. Hence,
eventually for some large Ns ∈ Z+, we can say whenever n ≥ Ns, it follows
that λn · si is arbitrarily close to v1 in P(s+KRλ). Together with the fact
that λn · si ∈ Sλ for all n > 0, we obtain

n ≥ Ns =⇒ λn · si ∈ s+ Sλ,

proving Claim 1 and concluding the proof. !

3.3. Uniformly λ-expanding Star Map – The proof of
Theorem 3.3

In this section, we construct a uniformly λ-expanding star map for any
Perron number λ to prove Theorem 3.3, which we restate here:

Theorem 3.4 (Uniformly Expanding Star Maps for Perrons). Let
λ be a Perron number. Then there exists n > 0 and a star map f : ∗n → ∗n
such that f is a uniform λ-expander with mixing incidence matrix.

Proof. Use Lemma 2.15 to find N,n0 ∈ Z+ with N > n0 such that λN ≡ λn0

mod 2Oλ. Recall by Proposition 3.7, we can write Sλ = 〈s1, . . . , sm〉. Set
T = s1 + . . .+ sm, and for each k = 1, . . . ,m define:

gk = λn0 · sk + 2(T + λ · sk) ∈ Sλ.

For each k = 1, . . . ,m, Proposition 3.8 with s = gk yields Nk ∈ Z+ such that
n ≥ Nk implies that λn · sk ∈ gk + Sλ.

Now, letting M := p(N − n0) +N , where p is sufficiently large integer
so that M ≥ max{N1, . . . , Nm}, we have that λM · sk ∈ gk + Sλ, for all
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k = 1, . . . ,m. We claim that we also have that λM ≡ λn0 mod 2Oλ since

λp(N−n0)+N ≡ λp(N−n0)+n0

≡ λpN−(p−1)n0

≡ λ(p−1)(N−n0)+N

...

≡ λ(p−2)(N−n0)+N

...

≡ λN ≡ λn0 mod 2Oλ.

Hence, for each k = 1, . . . ,m,

λM · sk − λn0 · sk ∈ 2(T + λ · sk) + Sλ,

where the left hand side is (λM − λn0) · sk ≡ 0 mod 2Oλ. This implies that
(λM − λn0)sk is written as a linear combination of the {si}mi=1 with even
coefficients. However, as 2(T + λ · sk) already has even coefficients so that
for each k = 1, . . . ,m, there must exist e(k)1 , . . . , e(k)m ∈ Z≥0 such that

(λM − λn0) · sk = 2(T + λ · sk) +
m
∑

i=1

2e(k)i si

= 2λ · sk +
m
∑

i=1

(2e(k)i + 2)si.

Thus, we obtain the following key identity that will be used to construct the
desired uniformly λ-expanding star map:
(†)

λM · sk =

[

m
∑

i=1

(2e(k)i + 2)si

]

+ (2λ · sk) + (λn0 · sk), for k = 1, . . . ,m.

Now, we begin the construction of the star map using Equation (†). Con-
sider a star graph ∗mM with mM tips. For k = 1, . . . ,m and i = 1, . . . ,M ,
label each edge by (sk, i) and set its length to be:

||(sk, i)|| = λi−1 · sk ∈ Sλ ⊂ R+,

where the last containment comes from the usual embedding Sλ = (KRλ ∩
Oλ) \ {0} ↪→ (KRλ ∩Q(λ)) \ {0} ↪→ R+.
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Now define the star map fλ : ∗mM → ∗mM by mapping each edge (sk, i)
to (sk, i+ 1) when i < M and mapping (sk,M) to an edge path as follows:

(sk,M)
fλ&−→ (2e(k)k + 2)(sk, 1)

△
⊔

i )=k

(2e(k)i + 2)(si, 1) △ 2(sk, 2) △ (sk, n0 + 1)

More precisely, fλ sends each edge {(sk, i)}M−1
i=1 to the next edge corre-

sponding to sk, and sends the M -th edge (sk,M) to an edge path traversed
in the following order:

(i) First, it maps 2e(k)k + 2 times over the edge (sk, 1),

(ii) next, for each j += k it goes 2e(k)j + 2 times over the edge (sj , 1),

(iii) then, it maps 2 times over the edge (sk, 2),

(iv) and finally, it maps over the edge (sk, n0 + 1) once.

The choices of lengths of edges in ∗nM guarantee that fλ is uni-
formly λ-expanding. We immediately have ||fλ((sk, i))|| = ||(sk, i+ 1)|| =
λisk = λ||(sk, i)|| for 1 ≤ i < M . For i = M , by Equation (†) we have

||fλ((sk,M))|| =

[

m
∑

i=1

(2e(k)i + 2)si

]

+ (2λ · sk) + (λn0 · sk)

= λMsk = λ||(sk,M)||.

Now we verify that fλ is a star map with mixing incidence matrix. First,
the fact that fλ traverses all edges but one an even number of times implies
that fλ fixes the center vertex (or equivalently, preserves the bipartite struc-
ture). By construction, it follows that every edge is the first element of the
image edge path of some edge (i.e., the first edge map f1 is a permutation).

Finally, to see that fλ has mixing incidence matrix, we observe that for
each edge (sk, i) (regarding i as an integer modulo M):

fM
λ ((sk, i)) ⊃

m
⊔

k=1

(sk, i)

f2M
λ ((sk, i)) ⊃

m
⊔

k=1

(sk, i) ̸
m
⊔

k=1

(sk, i+ 1)
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f3M
λ ((sk, i)) ⊃

m
⊔

k=1

(sk, i) ̸
m
⊔

k=1

(sk, i+ 1) ̸
m
⊔

k=1

(sk, i+ 2)

...

fM2

λ ((sk, i)) ⊃
M
⊔

i=1

m
⊔

k=1

(sk, i) = ∗mM ,

which implies that fλ has mixing incidence matrix. Indeed, denoting by Aλ
the incidence matrix of fλ, its power AM2

λ is a positive matrix by the above
observation. This concludes the proof. !

The fact that the incidence matrix for fλ is mixing will be used to prove
Theorem 6.1, which states that the incidence matrix of its split S(fλ) is as
well.

Next, we expand Theorem 3.3 to weak Perron numbers via the following
lemma.

Lemma 3.9 (Uniformly Expanding Star Maps for Weak Perrons).
Let λ be a weak Perron number. Then there exists k > 0 and a star map
f : ∗k → ∗k such that f is a uniform λ-expander.

Proof. If λ is a weak Perron number, then by Proposition 2.12, there exists
some N such that λN is a Perron number. Then by Theorem 3.3, we can
construct a star map f : ∗n → ∗n for some n > 0, which is λN -uniformly
expanding.

Now take N -copies C0, . . . , CN−1 of ∗n, and glue them along the center
vertices to form a star ∗k = ∗Nn with Nn tips.

Decide the lengths on each edge in C0 according to the construction of
∗n from Theorem 3.3. Then for i = 1, . . . , N − 1, set the edge length of edges
in Ci to be exactly λi times the length of the corresponding edge of C0. Now
define fN : ∗k → ∗k as follows. For 0 ≤ i ≤ N − 2, send each edge of Ci to
the corresponding edge in the next copy, Ci+1, i.e. fN simply shifts Ci to
Ci+1. Then by construction, fN is uniformly λ-expanding on C0, . . . , CN−2.
Next, to make fN uniformly λ-expanding on CN−1 as well, define fN by
mapping each edge of CN−1 to an edge path of C0 following the recipe given
by the map f : ∗N → ∗N in Theorem 3.3, which is λN -uniformly expanding.
In particular, we apply f to the edge of CN−1, uniformly expanding the
length of the edge by λN , and then shift the image of the edge path to the
corresponding edge path in C0, which shrinks the length of the edge path

For the author's personal use only.

For the author's personal use only.



!

!

“4-Patel” — 2024/8/14 — 15:40 — page 152 — #26
!

!

!

!

!

!

152 Dickmann et al.

C0

C1

C2

C3

Figure 5: Gluing four copies of ∗4 to form ∗16. The length of each edge in
Ci+1 is given by multiplying by λ to the corresponding edge in Ci.

by λN−1. Therefore, each edge e in CN−1 will be mapped to an edge path
in C0 whose length is (λN )/λN−1 = λ times the length of the edge e in
CN−1. Given a weak Perron number λ, this concludes the construction of
fN : ∗k → ∗k which is uniformly λ-expanding. !

4. Prototype Graph

4.1. Constructing the prototype maps

Let P7 denote the bipartite graph with two vertices v0, v1 and seven edges
as in Figure 6. We will refer to this graph as the prototype graph. Orient
the edges according to the bipartite structure, e.g. , with initial vertex v0
and terminal vertex v1; let a, b, . . . , g label the edges with respect to this
orientation, and A,B, . . . , G denote the opposite orientation. We endow P7

with a traintrack structure as shown in Figure 6. Note that all of the turns
between the a, b, and c edges are legal at both of the vertices.

Let ε1 be the identity map on P7. Now we define a set of traintrack maps
{ε3+2m}∞m=0 on the prototype graph P7. For m ≥ 0 let ε3+2m : P7 → P7 be
the taut graph map defined as follows:
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v0

a &→ aGa

b &→ bDb

c &→ cFc

d &→ aBa

e &→ cBa

f &→ aCa

g &→ bEb

v1

Figure 6: The traintrack structure on P7 from Thurston’s original paper
[13]. The red paths between edges indicate the legal turns.

ε3+2m :



















































a &−→ aG(aB)ma,

b &−→ bD(bC)mb,

c &−→ cF (cA)mc,

d &−→ aB(aB)ma,

e &−→ cB(aB)ma,

f &−→ aC(aB)ma,

g &−→ bE(bA)mb.

Since edges are mapped to paths of odd length, each ε3+2m preserves
the bipartite structure of P7, and in fact fixes the vertices v0, v1 pointwise.
We will call these maps {εn}, for n odd and positive, the prototype maps.

We claim the prototype maps are all traintrack maps. Since ε1 is the
identity map it is a traintrack map. One can then check that for ε3+2m every
legal turn is sent to a legal turn. Note that in determining the action of a
map on turns, we only need to consider the first and last edges of the image
edge-paths. This allows us to check that ε3+2m is a traintrack map for all
m ≥ 0. For example, we check ε3+2m maps the legal turns at v0 that involve
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the a edge to legal turns at v0.

Ba &→ Ba

Ca &→ Ca

Ga &→ Ba.

Now, using Figure 6, one can check that each edge is mapped to a legal path.
This check is possible for all m ≥ 0 since at most only four distinct turns
occur in the image of each edge. For example, ε3(a) consists of two kinds
of turns aG,Ga and ε3+2m(a) with m ≥ 1 consists of four kinds of turns:
aG,Ga, aB and Ba, which are all legal as shown in Figure 6 and this is
independent of the value of m ≥ 0. Lastly, we note that the prototype maps
are indeed taut since they are local embeddings on the interiors of edges.
Again, this is independent of m and is checked directly by noting that the
image of each edge is reduced as a word in the free group π1(P7).

4.2. Homotopy equivalence via folding.

In this section, we prove that the prototype maps are, in fact, homotopy
equivalences and, therefore, induce automorphisms of π1(P7) ∼= F6, the free
group of rank 6.

Lemma 4.1. All of the prototype maps {εn}, for n positive and odd, are
homotopy equivalences.

Proof. The map ε1 is the identity map and hence a homotopy equivalence.
We will check directly using Stalling folds that ε3+2m is a homotopy equiv-
alence for m ≥ 0. Recall that if we perform only Type I folds while de-
composing a graph map á la Stallings and the resulting immersion, ψ, is
a homotopy equivalence, then the original map is a homotopy equivalence.
This argument is largely a “proof by picture,” and so we direct the reader
to Figure 7 throughout the proof. We first show that ε3 is a homotopy
equivalence. Begin by subdividing the edges of the domain graph via the
full pre-image of the vertices. Then ε3 is described by Figure 7. Note the
edges d, e, f, g are in black as they will never be folded.

We begin with all of the possible folds on edges adjacent to the left- and
rightmost vertices. That is to say, we fold all edges with the same label and
orientation at a vertex. The first four collection of folds, labeled F1, F2, F3

and F4, are performed in Figure 7. For readability, we will omit the a, b, c
labels on the yellow, green, and pink edges in the figures from now on. We
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Figure 7: Folding ε3. All folds F1, . . . , F7 are of Type I.

point out that for these first four folding maps, we are only ever folding
edges that are distance at most two from the leftmost vertex or one from
the rightmost vertex. This is unimportant right now, but will be important
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in the proof of Proposition 5.6, when we verify that our split maps are
homotopy equivalences.

Figure 7 shows the next three folds, F5, F6, and F7 that are performed.
The map ψ from Theorem 2.9 after these seven folding maps is the identity
up to permuting edges. Thus, ε3 is a homotopy equivalence.

Next, we turn our attention to an arbitrary ε3+2m with m ≥ 1. Figure 8
shows the map ε3+2m graphically.

We begin with the first four folding maps that are effectively the same
folds as in the ε3 case. The main difference is that for F1, we fold not
just the first edge adjacent to the rightmost vertex, but instead fold the
entire edge path of length 2m+ 1 adjacent to this vertex. For example,
ε3+2m(a) and ε3+2m(d) both end in (aB)ma, so the portions of the edge
paths corresponding to these 2m+ 1 characters are folded. The next three
maps, F2, F3, F4, are exactly the same as in the ε3 case. (Compare F2, F3, F4

in Figure 7 with those in Figure 8.)
Next, we perform a new type of folding map called a wrapping map.

See Figure 8. After performing F4 ◦ F3 ◦ F2, there is a loop labeled by aB
beginning at the left-most vertex. The map F5 will consist of 2m+ 1 Type I
folds that take an edge path labeled by (aB)ma and first “wrap” it around
this loop labeled by aB a total of m-times before folding the last a-edge.
These folds are possible because the a-edge at the start of the edge path
labeled by (aB)m and the a-edge of the loop aB we are wrapping the edge
path around begin at the same vertex. Next, F6 and F7 are simple single
folds along a b-edge and a c-edge respectively. Then F8, F9, and F10 are again
“wrapping” maps. Namely, the map F8 folds m times around cB, the map
F9 folds m times around aB, and the map F10 folds m times around aC.
The single fold performed by the F6 map eliminates the need to do a single
fold in F8 and F9. Note that it is essential to perform the single fold in the
F6 map before F8 in order to ensure that the edge path labeled by (cB)m

and the c-edge of the loop cB begin at the same vertex so that folding
is possible. The same applies to the edge path labeled by (aB)m that is
wrapped around aB in F9. Similarly, F10, wrapping (aC)m over aC requires
the single-edge fold F7. In this way, we see that we obtain the original graph
and that ψ from Theorem 2.9 is the identity map up to permuting edges
after performing all of these Type I folds. We conclude that ε3+2m is also a
homotopy equivalence for all m ≥ 1. !
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Figure 8: Folding ε3+2m for m ≥ 1. All folds F1, . . . , F10 are of Type I. The
highlighted grey edge paths at each stage represent edges involved in the
folding maps being described.

5. Splitting graphs

Given a weak Perron number λ, we constructed a graph map fλ on a star
graph that is uniformly λ-expanding and a homotopy equivalence in Sec-
tion 3. Though it is close to being the desired map for Theorem 1.1, it is far
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from being a traintrack map because of the large amounts of backtracking
in the star maps. In this section, we edit fλ by “blowing up” each edge of
the star graph to the prototype graph P7 and use the prototype maps of
Section 4 to resolve the backtracking and obtain a traintrack map (Proposi-
tion 5.5). During this process, we carefully preserve certain properties of fλ,
specifically uniformly λ-expanding (Proposition 5.4) and being a homotopy
equivalence (Proposition 5.6). This process of blowing up a graph is named
splitting by Thurston in [13, Section 9], and we will discuss the process in
Section 5.1.

5.1. Split Graphs and Split Maps

Definition 5.1. Given a bipartite metric graph Γ, we define the split
graph, S(Γ), by replacing each edge of Γ with a copy of the prototype
graph P7 from Section 4 whose edges have the same length as the replaced
edge. That is, if the edges of Γ are enumerated x1, x2, . . ., replace the edge xi
between vertices v0 and v1 with 7 edges labelled ai, bi, . . . , gi each of which
has the same length as xi. See Figure 9 for an example of a split graph.

x2x1

x3

v1 v2

v3

v0

v1 v2

v3

v0

Γ

a1 a2

g1 g2

a3

g3

S(Γ)

Figure 9: Example of a split star graph. The initial graph, Γ, is on the left,
and the split graph, S(Γ), is on the right.

S(Γ) inherits a traintrack structure from the traintrack structure on the
prototype graph in the following way: turns are legal in S(Γ) if and only if the
turns without subscripts define a legal turn in the prototype. For example, a
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turn of the form aiBj is legal as the turn aB is legal in the prototype graph
P7, and a turn of the form aiFj is not, as the turn aF is illegal in P7.

Definition 5.2. Given a self-map f : Γ −→ Γ which preserves the bipartite
structure and does not collapse any edges, we define the split map

S(f) : S(Γ) −→ S(Γ)

as follows. Let yi be an edge of S(Γ) corresponding to the edge xi of Γ,
where y ∈ {a, b, . . . , g}. For an edge path w in Γ, denote by ||w|| the length
of w when each edge of Γ is endowed with length 1. Now, if ||f(xi)|| = $, then
S(f) sends yi to the edge path given by ε%(y) with subscripts identical to
the subscripts of the edge path f(xi). Note that the word length of the edge
path f(xi) determines which prototype map is used to define the image of
yi for all y ∈ {a, b, . . . , g}. Symbolically:

S(f)(yi) := [ε||f(xi)||(y)]f(i),

where for a path P in the prototype graph P7, the notation [P]f(i) ⊂ S(Γ)
means that the path P is given the subscripts of the edge path f(xi).

Note, since f preserves the bipartite structure, the word length of edge
paths of the form f(xi) is always odd, which makes our definition using
prototype maps {εn} well-defined. Moreover, S(f) preserves the induced
bipartite structure on S(Γ).

Example 5.3. Let Γ be the star graph ∗3. Define a star map f : Γ −→ Γ
by:

f(x1) = x2X2x3,

f(x2) = x3,

f(x3) = x1X1x3X3x2.

Then, for the split map S(f) : S(Γ) −→ S(Γ), we need to use three dif-
ferent prototype maps for edges with three different subscripts. Namely, for
y ∈ {a, b, . . . , g}, we need to use ε3 for S(f)(y1) as ||f(x1)|| = 3, use ε1 = id
for S(f)(y2) as ||f(x2)|| = 1, and use ε5 for S(f)(y3) as ||f(x3)|| = 5.

More precisely,

S(f)(a1) = a2G2a3, S(f)(b1) = b2D2b3, S(f)(c1) = c2F2c3,

S(f)(a2) = a3, S(f)(b2) = b3, S(f)(c2) = c3,

S(f)(a3) = a1G1a3B3a2, S(f)(b3) = b1D1b3C3b2, S(f)(c3) = c1F1c3A3c2,
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and so on for yi = di, ei, fi, and gi, with i = 1, 2, 3.

Proposition 5.4. If f : Γ → Γ is uniformly λ-expanding, then so is S(f) :
S(Γ) → S(Γ).

Proof. Essentially, this follows from the definition of the split map. Let $ be
the length function on Γ. If f(xi) = xi1 · · ·xik , then S(f)(yi) = z(1)i1

· · · z(k)ik

for some z(1), . . . , z(k) ∈ {a±1, b±1, . . . , g±1}. By definition of S(Γ), we have
$(xij ) = $(z(j)ij

) for all j, so

$ (S(f)(yi)) =
k
∑

j=1

$(z(j)ij
) =

k
∑

j=1

$(xij ) = $(f(xi)) = λ$(xi) = λ$(yi),

which proves that S(f) is uniformly λ-expanding. !

5.2. Splitting Maps are Traintrack Maps

It turns out that, with some mild conditions, S(f) is always a traintrack
map.

Proposition 5.5. Let f : Γ → Γ be a map that preserves the bipartite struc-
ture and maps each edge to an edge-path of length at least 1. Then S(f) is
a traintrack map.

Proof. As before, we will denote by {xi} the edge set of Γ, and by yi an edge
of S(f) with y ∈ {a, . . . , g}, corresponding to an edge xi of Γ.

Recall that the traintrack structure on S(Γ) is defined so that a turn is
legal if and only if the corresponding turn in the prototype graph P7 obtained
by forgetting subscripts is legal. Hence, it automatically follows that every
edge yi of S(Γ) is sent to a legal path via S(f), because forgetting the
subscripts of the image S(f)(yi) is exactly ε||f(xi)||(y), which is a legal path
since the prototype maps {εn} are traintrack maps. (See Section 4.1.)

Therefore, to show S(f) is a traintrack map, it suffices to show that
S(f) sends a legal turn to a legal turn. First note that only turns of the
form yiZj , where y ∈ {a, . . . , g} and Z ∈ {A, . . . , G} are legal in S(Γ). Take
such a legal turn. Then, again by definition, yZ is a legal turn in P7. Since all
the legal turns in P7 consist of at least one of the a-, b-, or c-edges, and zY
is legal if and only if yZ is legal, we may assume without loss of generality
that y ∈ {a, b, c} (otherwise swap the roles of y and z in this proof). On the
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other hand, the turn yiZj will be mapped to the following turn, which is a
concatenation of two edges:

[Last edge of S(f)(yi)] · [First edge of S(f)(Zj)] .

This turn is legal if and only if the corresponding turn in P7



Last edge of ε||f(xi)||(y)
]

·


First edge of ε||f(xj)||(Z)
]

(i.e., deleting the subscripts) is legal in P7. The key observation is that by
the definition of prototype maps {ε3+2m} on the a, b, and c edges of P7,
the last edge of ε3+2m(y) is the same as y regardless of the value 3 + 2m.
Therefore, we can replace the prototype map ε||f(xi)|| for y to ε||f(xj)||, so the
turn is actually identical to the following turn:



Last edge of ε||f(xj)||(y)
]

·


First edge of ε||f(xj)||(Z)
]

,

which is legal because yZ is a legal turn and ε||f(xj)|| is a traintrack map.
This concludes that S(f) is a traintrack map.

!

5.3. Splitting Star Maps

Next we verify that S(f) induces an automorphism of π1(S(Γ)). That is, we
check that S(f) is a homotopy equivalence.

Proposition 5.6. Let ∗n be a star graph and let f : ∗n → ∗n be a star map.
Then S(f) is a homotopy equivalence.

Proof. We use Stallings folds as in the proof for prototype maps
(Lemma 4.1). First, note the following two properties of star maps. A star
map is always a permutation on the first edge map and each edge is mapped
to an edge-path of odd length. In particular, the image of an edge under
a star map is of the form f(xr) = xj1Xj1 · · ·xjm+1

Xjm+1
xjm+2

, where r and
j1, . . . , jm+2 are in {1, . . . , n} so that the edges in the image come in pairs
(of an edge and its inverse) until the final edge.

The split graph, S(∗n), is a “flower” with n “petals,” each of which
is a copy of the prototype graph, P7. We will first focus on a single petal
corresponding to an edge xr of ∗n and begin folding there. The map on a
petal is similar to those given by Figure 8, with the differences arising from
the fact that the labels on the edges come equipped with subscripts. The
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subscripts are also determined by the map f on the original edges of the
star graph. For instance, if f(xr) = xj1Xj1 · · ·xjm+1

Xjm+1
xjm+2

, then

S(f)(ar) = aj1Gj1aj2Bj2 · · · ajm+1
Bjm+1

ajm+2
,

since ε3+2m(a) = aG(aB)ma. This means that if ||f(xr)|| ≥ 3, then S(f)(ar)
will traverse a-, B-, and G-edges in different petals. To initiate the folding
process, we subdivide the edges according to their image under S(f). On
the r-th petal, we see the same sequence of subscripts on every single edge
since the subscripts for the images S(f)(ar), S(f)(br), . . . , S(f)(gr) are all
determined by f(xr). In case ||f(xr)|| = 1, say f(xr) = xr′ , then S(f) will
just map the r-th petal to the r′-th petal. In this case, there is no need to
subdivide the edges in the r-th petal, but we need to relabel the edges yr as
y′r for y ∈ {a, . . . , g} before we fold.

Recall the first four folding maps we performed in the proof of Lemma 4.1
only fold edges that have the same subscript. To be precise, every fold that
is performed through the maps F1, . . . , F4 is between edges that lie in the
two leftmost edges or in the rightmost edges in each petal. We refer again
to Figure 8 for a picture of these folds. Thus, after performing F1, . . . , F4

on each petal, we obtain a picture as in the middle of Figure 10. When
||f(xr)|| = 1, the maps F1, . . . , F4 are just identity maps on the r-th petal.

The last few folding maps in the proof of Lemma 4.1 were “wrapping”
maps that performed a sequence of folds wrapping edge paths of the form
(aB)m, (cB)m, and (Ca)m around loops aB, cB, and aC, respectively. We
could perform the first fold of F5 because the first a-edge of (aB)m and
the a-edge in the aB loop that the path is wrapped around share an initial
vertex. Then, each subsequent fold of b- or a-edges has the same property.
The subtlety in performing similar wrapping maps in Figure 10 is that the
edge paths now have subscripts, and we must verify that the appropriate
edges with the same subscript share an initial vertex so that we can perform
each fold in the wrapping maps.

The wrapping map F5 in Lemma 4.1 folds the edge path corresponding
to (aB)ma in ε3+2m(a) (all but the first two characters). Recall that

S(f)(ar) = aj1Gj1aj2Bj2 · · · ajm+1
Bjm+1

ajm+2
,

and that f is a permutation on the first edges, which implies that after
performing F4 ◦ · · · ◦ F1 all of the ai, bi, and ci edges are adjacent to the
central vertex in Figure 10 for i = 1, . . . , n. This means that we can perform
the first two folds on the aj2Bj2 edges of the folding map F5, regardless of
the value of j2. After folding these two edges, the next pair aj3Bj3 in the
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Figure 10: (j1 = 1, jm+2 = 2). The graphs obtained after doing the four folds
F1, . . . , F4 on each petal, followed by performing F5 on a single petal. Note
that since the star map f acts as a permutation on the first edges, all of the
ai, bi, and ci appear and share the middle vertex as their initial vertex.

edge path now starts at the center vertex in Figure 10 so that we can fold
regardless of the value of j3. Continuing in this way, we can perform 2m of
the 2m+ 1 single folds that constitute F5. The final fold in F5 in the proof
of Lemma 4.1 is along an a-edge. This final a-edge is labeled by ajm+2

and
has the center vertex of the flower as its initial vertex after the first 2m folds
of F5 (see Figure 10). Thus, the final fold of F5 can indeed be performed.
The result of the folding map F5 on the petal corresponding to xr is shown
in Figure 10 with the assumption that j1 = 1 and jm+2 = 2 for simplicity
of the picture. The figure is far more complicated than that in the proof
of Lemma 4.1 since edges in the r-th petal are folded with edges in petals
corresponding to other xk’s.

Moving forward, the F6 map in the proof of Lemma 4.1 is a fold involving
the last b-edge in the edge path corresponding to ε3+2m(b) = bD(bC)mb.
The last b-edge in S(f)(br) is labelled by bjm+2

. In fact, due to the folds that
were already performed, this edge has been identified with the last b-edge
of S(f)(gr). Due to the final fold in F5 described in the previous paragraph,
this bjm+2

edge shares an initial vertex with another bjm+2
edge, and so we
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Figure 11: (j1 = 1, jm+2 = 2). Continuing from Figure 10, we perform F6

and F7 each to fold single edges bjm+2
and cjm+2

to obtain the middle graph.
Then we do three “wrapping-up” folds F8, F9 and F10 to obtain the rightmost
graph, where the petal we chose to fold now looks like a copy of P7.

perform the single fold and call it F6 (see Figure 11). Similarly, the final
edge of the edge path corresponding to ε3+2m(c) = cF (cA)mc is labeled by
cjm+2

and shares an initial vertex with another cjm+2
due to the folds of F5.

We perform this single fold, which we call F7. Again, we refer the reader to
Figure 11 where we assume j1 = 1 and jm+2 = 2 for simplicity.

After F6 and F7 have been applied, the edge path cjm+1
Bjm+1

· · · cj2Bj2

starts at the center vertex of the petal, and therefore, we can begin the folds
that wrap around the appropriate loops of the form ciBi, just as we did in
the proof of Lemma 4.1. Again, we are using the fact here that all of the ai,
bi, and ci edges begin at the center vertex (see the argument for F5 above).
In the same way, we can perform the F9 map once F6 has been applied and
wrap the edge path labelled by ajm+1

Bjm+1
· · · aj2Bj2 around the appropriate

aiBi loops. Lastly, F10 wraps the edge path labeled by ajm+1
Cjm+1

· · · aj2Cj2

around the appropriate aiCi loops, which is possible due to the single fold
of F7.

Finally, we perform the analogous folds F5, . . . , F10 on each of the other
n− 1 petals in the rightmost graph of Figure 11. The resulting map ψ
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Figure 12: The decomposition of S(f). Note the immersion ψ is the identity
map up to permuting petals or edges within petals.

of Theorem 2.9 is the identity map on S(∗n) up to permuting the petals
and permuting edges within a petal (a graph automorphism), which is in-
deed a homotopy equivalence. Since only folds of Type I were performed in
F1, . . . , F10, we conclude that S(f) is a homotopy equivalence. See Figure 12
for the summary. !
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6. Conclusion: Proof of Thurston’s Theorem

It remains to show that for any weak Perron or Perron number λ, S(fλ) is
ergodic. Note that the proof of this fact was missing in Thurston’s paper.
We first prove the case where λ is Perron and then extend to weak Perron
numbers.

We retain the notation from Section 3.3 so that ∗n = ∗mM consists of m
families of M tips. We call each family of M tips a fan. We label the tips by
I = (sk, i) where k ∈ {1, . . . ,m} and i ∈ {1, . . . ,M}. Also, when i < M for
I = (sk, i) we write I + 1 = (sk, i+ 1).

Theorem 6.1. Let λ be a Perron number and fλ be the star map con-
structed in Theorem 3.3. Then its split map S(fλ) : S(∗n) → S(∗n) is mix-
ing, i.e., for an edge yI in S(∗n), there exists an L such that S(fλ)L(yI) ⊇
S(∗n).

There are two key aspects of our constructions thus far that will be
pivotal in the proof of this lemma: the way the star map fλ constructed in
the proof of Theorem 3.3 acts on the edges (sk,M) of ∗n (the last tip in each
fan), and the way prototype maps act on edges in the prototype graph, with
particular focus on the fact that for large m > 0, ε3+2m(a) = aG(aB)ma
maps over aB a large number of times. Using these two facts together, we
break down the proof of Theorem 6.1 into the following five steps:

• Step 1: We first show that the image of yI under a large enough power
of S(fλ) contains some a-edge in S(∗n).

• Step 2: Then we show that a bigger power of S(fλ) applied to yI
contains all a-edges in S(∗n).

• Step 3: Next, we show that any further power of yI under S(fλ) will
still contain every a-edge in S(∗n).

• Step 4: We use this to conclude that there is a larger power of S(fλ)
so that the image of yI contains all a- and g-edges in S(∗n).

• Step 5: We then obtain all of the b-, e-, c-, d-, and f -edges in S(∗n)
using further powers of S(fλ), in that order, to obtain the mixing
conclusion.

Proof. In what follows, we use Γ to denote ∗n = ∗mM . We drop the subscript
λ from fλ and simply call its split S(f). Take a random edge in S(Γ) labelled
by yI , where y ∈ {a, b, . . . , g} and I = (sk, i) for some k ∈ {1, . . . ,m} and
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i ∈ {1, . . . ,M}. Then, there exists p ≥ 0 such that S(f)p(yI) = yK where
K = (sk,M). To be precise, we can take p = M − i. That is to say, we shift
yI along its fan until it lives on the prototype corresponding to the last edge
in this fan. Here we are using the fact that when i < M and I = (sk, i), then
S(f) sends yI to yI+1. We do this so that the next iterate of S(f) applied
to yI involves the application of a non-identity prototype map.

Recall the prototype maps ε3+2m for m ≥ 0 are given by:

ε3+2m :



















































a &→ aG(aB)ma,

b &→ bD(bC)mb,

c &→ cF (cA)mc,

d &→ aB(aB)ma,

e &→ cB(aB)ma,

f &→ aC(aB)ma,

g &→ bE(bA)mb.

Step 1: Since f((sk,M)) always maps over at least 5 edges, we use the
prototype maps ε3+2m with m ≥ 1 to construct the split map S(f) from f .
In addition, the image of an edge under such prototypes will always contain
a portion of the form (wZ)m where w, z ∈ {a, b, c} are distinct. Recall that
f((sk,M)) in Γ maps over (sk, 1) an even number of times, then maps over
(s%, 1) for all $ += k an even number of times in some order, then maps over
(sk, 2) exactly twice, and finishes by mapping over (sk, n0 + 1) exactly once.
Therefore, the image of an edge in S(Γ) under S(f) will map over the w- and
z-edges of the prototypes corresponding to (s%, 1) for all $ += k and (sk, 2).

From this, we conclude that, so long as y += b, S(f)p+1(yI) contains
aJ for some J ; in fact, this image contains several a-edges. This is due
to the fact that the image of every other edge besides b in the proto-
type contains a word of the form (wZ)m where either w or z is a. If
y = b, then ε3+2m(b) = bD(bC)mb, so that S(f)p+1(yI) contains d(sk,1).
Therefore, S(f)p+2(yI) contains d(sk,2), S(f)

p+M (yI) contains d(sk,M), and
S(f)p+M+1(yI) contains aJ for J = (sk, 1) since ε3+2m(d) = aB(aB)ma.

Step 2a: However, we claim that since there is a power of S(f) so that
the image of yI contains aJ0

for some J0, then there is a further power,
call it S(f)q, so that the image of yI contains aJ for all J = (sj , 1), where
j = 1, . . . ,m. Note that this is still a subset of the set of all a-edges in
S(∗n). Without loss of generality, assume J0 = (s%,M) for some $ (making
the second component M can be achieved by applying a few more iterates of
S(f)). Then, the claim follows from the fact that ε3+2m(a) = aG(aB)ma so
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that S(f)(aJ0
) first maps over aJGJ for J = (s%, 1) and then maps over aJBJ

for J = (sj , 1) for all j += $. In fact, after mapping over aJBJ for J = (sj , 1)
and j += $, S(f)(aJ0

) then maps over aJBJ for J = (s%, 2). The fact that the
image contains a(s",2) is essential for showing that the map is mixing and
not just ergodic, as we will now see.

Figure 13: M = 3,m = 4. The K-th edge in Γ is thickened and colored in
red when S(f)n(yI) contains aK . The figure illustrates how the subsequent
powers of S(f)q will map yI over all edges of the form aJ .

Step 2b: Given the fact that S(f)q(yI) contains aJ for all J = (sj , 1)
and J = (s%, 2) for some $, we now show that another further power of S(f)
applied to yI contains all a-edges of S(∗n). We outline the argument in the
bullet points below for ease of readability.

• First, S(f)q+1(yI) contains aJ where J = (sj , 2) for all j and for J =
(s%, 3).

• Then, S(f)q+M−2(yI) contains aJ where J = (sj ,M − 1) for all j and
for J = (s%,M).
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• In the next iterate of S(f), a(sj ,M−1) maps to a(sj ,M). Additionally,
a(s",M) maps over aJ where J = (sj , 1) for all j and for J = (s%, 2). In
summary, S(f)q+M−1(yI) contains aJ where J = (sj , 1), (sj ,M) for all
j and for J = (s%, 2). See Figure 13(c).

• Then, S(f)q+M (yI) contains aJ where J = (sj , 1) and (sj , 2) for all j
and for J = (s%, 3). See Figure 13(d).

• Applying S(f)M once more, we see that S(f)q+2M (yI) contains all aJ
where J = (sj , 1), (sj , 2), (sj , 3), for all j and for J = (s%, 4).

• Continuing in this fashion, S(f)q+(M−2)M (yI) contains all aJ where
J = (sj , 1), . . . , (sj ,M − 1) for all j and for J = (s%,M).

• Since S(f)(a(s",M)) contains all aJ of the form J = (sj , 1), it follows
that S(f)r(yI), for r = q + (M − 2)M + 1, contains aJ for all J .

Thus, we have that there exists r such that S(f)r(yI) contains aJ for all
J concluding Step 2.

Step 3: We claim that any further power of yI under S(f) will still
contain every a-edge in S(∗n). In particular, S(f)(aJ) = aJ+1 for all J =
(sj , i) when i < M , and S(f)(a(s",M)) contains all a(sj ,1). In this way, we
do not lose any a-edges in S(f)r(yI) ⊂ S(∗n) by applying further powers of
S(f). See Figure 14.

Step 4: Additionally, we claim that for each j, S(f)(a(sj ,M)) also con-
tains g(sj ,1). This follows from the fact that the first two letters in the image
of a under any prototype map (except ε1; the identity) are aG and the fact
that f((sj ,M)) first maps over (sj , 1) at least twice. Therefore, S(f)r+1(yI)
contains gJ for all J = (sj , 1) (See Figure 14(b)) and S(f)r+2(yI) contains
gJ for all J = (sj , 1), (sj , 2) since g(sj ,1) maps to g(sj ,2) and a(sj ,M) maps over
g(sj ,1). See Figure 14(c). Finally, S(f)r+M (yI) contains aJ and gJ for all J .

Step 5: We continue this procedure to obtain, in order, every bJ and eJ ,
then cJ and dJ , and finally fJ edge in S(∗n). This order is determined by
the first two letters in the images of {a, b, . . . , g} under the prototype maps.
Therefore, there exists an L such that fL(yI) contains all of S(∗n). !

Proceeding to the case of weak Perron numbers λ, we have:

Theorem 6.2. Let λ be a weak Perron number and fλ be the star map
constructed in Lemma 3.9. Then its split map S(fλ) : S(∗n) → S(∗n) is er-
godic, i.e., for each pair of edges yI , zJ in S(∗k), there exists an L such that
S(fλ)L(yI) ⊃ zJ .
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Figure 14: Red(with non-dashed) and blue(with dashed) edges in S(Γ) are
a- and g-edges in the image of yI via corresponding power of S(f) written
below each graph. The figure illustrates how a subsequent power of S(f)r

will map yI over all edges of the form aJ and gJ . Note the red edges persist
throughout the process.

Proof. By Proposition 2.12, there is an integer N such that λN is Perron. We
use µ to denote λN in the remainder of this proof for notational simplicity.
Let fµ : ∗n → ∗n be the uniformly µ-expanding star map from Theorem 3.3
and fλ : ∗Nn → ∗Nn be the uniformly λ-expanding star map constructed
using fµ as in the proof of Lemma 3.9.

Label the edges of ∗n as j ∈ {1, . . . , n}, and the edges of ∗Nn as (i, j),
where i ∈ {0, . . . , N − 1} and j ∈ {1, . . . , n}. Then label the edges of S(∗n)
as yj and label the edges of S(∗Nn) as yij ’s, where y ∈ {a, b, . . . , g}, i ∈
{0, . . . , N − 1} and j ∈ {1, . . . , n}.

For each i = 0, . . . , N − 1, define Ci as the subgraph of S(∗Nn) consisting
of the edges of the form yij , which is homotopy equivalent to S(∗n). Call
C0, . . . , CN−1 the fans of S(∗Nn). Additionally, for a path γ in S(∗n), we
use [γ]i to denote the copy of this path in the i-th fan Ci of S(∗Nn).
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Recall that S(fµ) is mixing (by Theorem 6.1) and that fλ is constructed
to simply shift Ci to Ci+1 for all i < N − 1 and constructed to apply fµ to
CN−1 followed by shifting it to C0. We claim that S(fλ) is ergodic.

Now pick two edges yij and zi
′

j′ in S(∗Nn). Consider the two corresponding
edges yj and zj′ of S(∗n). By the fact that S(fµ) is mixing (and therefore
ergodic), there exists p such that S(fµ)p(yj) ⊃ zj′ . We will show that

S(fλ)
Np−i+i′(yij) ⊃ zi

′

j′ .

The following diagram breaks down how the power Np− i+ i′ of S(fλ) is
obtained, where the numbers over the arrows denote the power of S(fλ)
being applied. We will carefully explain each arrow in what follows:

yij
N−i&−→ [S(fµ)(yj)]

0 N(p−1)&−→ [S(fµ)
p(yj)]

0 i′&−→ [S(fµ)
p(yj)]

i′ ⊃ zi
′

j′

By the construction of fλ from fµ, S(fλ) simply translates Ci to Ci+1

when i < N − 1. Thus, we first move yij to yN−1
j using S(fλ)N−1−i. Applying

S(fλ) one more time brings yN−1
j to [S(fµ)(yj)]0. This is due to the fact that

S(fλ) amounts to applying S(fµ) to CN−1 and then translating the image
to C0. In summary, S(fλ)N−1−i+1(yij) = S(fλ)N−i(yij) = [S(fµ)(yj)]0 ⊂ C0.

Next, notice that applying S(fλ)N to this path amounts to applying
S(fµ) once to C0. Thus,

S(fλ)
N−i+N(p−1)(yij) = S(fλ)

Np−i(yij) = [S(fµ)
p(yj)]

0.

Moreover, [S(fµ)p(yj)]0 ⊃ z0j′ given the fact that S(fµ)p(yj) ⊃ zj′ . Lastly, we
apply S(fλ)i

′

to bring z0j′ to zi
′

j′ . Thus, S(fλ)
Np−i+i′(yij) ⊃ zi

′

j′ , proving that
S(fλ) is ergodic. !

Remark 6.3. The map S(fλ) from the construction in the proof of The-
orem 6.2 is not mixing. Indeed, S(fλ)k(yij) is completely contained in Cm

where m ≡ i+ k modulo N .

We conclude the paper with the proof of Thurston’s main theorem The-
orem 1.1.

Proof of Theorem 1.1. The forward direction is covered in the last para-
graph of Section 2.3. That is, if h is the topological entropy of an ergodic
traintrack representative of an outer automorphism of a free group, then eh

is a weak Perron number.
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Conversely, let λ be a weak Perron number. Then using Lemma 3.9 we
find a uniformly λ-expanding star map fλ : ∗k → ∗k for some k. Splitting
fλ we obtain our desired map S(fλ) : S(∗k) → S(∗k). This is a traintrack
map by Proposition 5.5 with respect to the traintrack structure given in
Section 5.1, and is indeed a topological representative of an outer auto-
morphism by Proposition 5.6. Also, S(fλ) is still uniformly λ-expanding by
Proposition 5.4, and is ergodic by Theorem 6.2. Finally, by Proposition 2.5,
the topological entropy of S(fλ) is indeed log λ, concluding the proof. !
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