Math 1321 Week 12 Lab Worksheet Due Thursday 04/24

1. Green's Theorem Find the work which is done by the force field $(3 x+4 y) \mathbf{i}+(8 x+9 y) \mathbf{j}$ on a particle that moves once around the ellipse $4 x^{2}+9 y^{2}=36$ by
(a) Directly evaluating the line integral. Hint: an ellipse given by $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is parameterized by $(a \cos t, b \sin t)$ for $0 \leq t \leq 2 \pi$.
(b) Using Green's Theorem
2. Stokes' Theorem Verify that Stokes' Theorem is true for the vector field $\mathbf{F}=x^{2} \mathbf{i}+$ $y^{2} \mathbf{j}+z^{2} \mathbf{k}$ and the region S is bounded by the paraboloid $z=1-x^{2}-y^{2}$ and the plane $z=0$.
(a) Write down Stokes' Theorem.
(b) Compute both sides of the equation for Stokes' Theorem.
3. Divergence Theorem S is the solid bounded by $0 \leq y^{2}+z^{2} \leq 1$ and $0 \leq x \leq 2$. Use the Divergence Theorem to calculate the flux of $\mathbf{F}=\left(x+z^{2}\right) \mathbf{i}+\left(y-z^{2}\right) \mathbf{j}+x \mathbf{k}$ through ∂S.
