Math 1321 Week 11 Lab Worksheet Due Thursday 04/17

1. Any physical interpretation of a line integral $\int_{C} f(x, y, z) d s$ depends on the physical interpretation of the function f. Suppose that $\rho(x, y, z)$ represents the linear density at a point (x, y, z) of a thin wire shaped like a curve C. Then the mass, m, of the wire may be obtained by $\int_{C} \rho(x, y, z) d s$.
(2 points) Find the mass of a spring in the shape of the helix defined parametrically by $x=2 \cos (t), y=t, z=2 \sin (t)$ for $0 \leq t \leq 6 \pi$, with density $\rho(x, y, z)=2 y$.

Many forces can be modeled with conservative force fields. Gravitational fields can be modeled this way. This fact allows us to estimate the total work done by a force field on an object passing through the field.

2. (2 points) Suppose that \mathbf{F} is an inverse square force field, that is

$$
\mathbf{F}(\mathbf{r})=\frac{c \mathbf{r}}{|\mathbf{r}|^{3}}
$$

for some constant c and $\mathbf{r}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$. Determine a formula for the work done by moving an object from a point P_{1} to the point P_{2} in terms of the distances d_{1} and d_{2} of these points from the origin. Hint: If \mathbf{F} is conservative, then line integrals are independent of the path.
3. (1 point) The gravitational force field is modeled by

$$
\mathbf{F}(\mathbf{r})=\frac{-m M G \mathbf{r}}{|\mathbf{r}|^{3}}
$$

Using your answer to part (1), determine the work done by the gravitational field when the earth moves from aphelion to perihelion. These correspond to the earth's maximum distance of $1.52 \times 10^{8} \mathrm{~km}$ from the sun, and it's minimum distance of $1.47 \times 10^{8} \mathrm{~km}$ from the sun respectively. Use the values of $m=5.97 \times 10^{24} \mathrm{~kg}, M=1.99 \times 10^{30} \mathrm{~kg}$, and $G=6.67 \times 10^{-11} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{kg}^{2}$.
4. (1 point) Determine the volume of the solid bounded by the cone $z^{2}=x^{2}+y^{2}$ and the paraboloid $z=x^{2}+y^{2}$.
5. extra practice (1 make-up point) Determine the volume of the solid bounded by the circular cylinder $(x-a)^{2}+y^{2}=a^{2}$, the cone $z=x^{2}+y^{2}$ and the plane $z=0$. (Hint: Use cylindrical coordinates).

