Name:

Math 1321 Week 10 Lab Due Thursday 4/10

1. Warm-up (2 points) Sketch the region of integration and interchange the order and evaluate.

$$
\int_{0}^{1} \int_{1-y}^{1}\left(x+y^{2}\right) d x d y
$$

2. Polar Coordinates

(a) (2 points) Evaluate $\iint_{D_{a}} e^{-\left(x^{2}+y^{2}\right)} d x d y$ where D_{a} is the disk $x^{2}+y^{2} \leq a$.
(b) (1 points) Show that the limit as $a \rightarrow \infty$ is π.
3. Triple Integrals (2 points) Let W be the region bounded by the planes $x=0, y=0$, and $z=2$, and the surface $z=x^{2}+y^{2}$. Compute $\iiint_{W} x d x d y d z$.
4. (1 point for effort +1 make-up point for correct solution) There is no direct way to compute the following integral using x, y coordinates.

$$
\int_{-\infty}^{\infty} e^{-x^{2}} d x=\pi
$$

Yes, believe it or not, the answer is $\pi!$ In fact, prove it. Hint: Use your answers to the antepenultimate question and don't use polar coordinates this time.
(By the way, the $\int_{-\infty}^{\infty} e^{-x^{2}} d x$ is called the Gaussian Integral and it plays a role in modern probability theory and quantum mechanics.)

