Name:
Score:

Math 1321 Week 3 Worksheet Due Thursday 01/30

1. (a) Compute the first three terms of Taylor Series for $f(x)=\sin (2 x)$ centered about $x=0$.
(b) Write down the Taylor series including the n-th term.
(c) On a separate sheet plot the degree $0,1,2$, and 3 approximations on the same plot over the interval $[-\pi, \pi]$.
(d) Use Taylor's Inequality on page 607 to bound the remainder $R_{3}(x)$ over the interval $\mathrm{I}=[-\pi, \pi]$.
2. 3D Crystals of Na^{+}and Cl^{-}form a square lattice like the one shown below.

The energy required to pull apart all the ions in the crystal from the central Na^{+}ion can be approximated by the sum of the work $W(x)$ required to break each bond as a function of the distances x relative to the central Na^{+}atom. This results in an alternating series. Focusing on the Na^{+}ion at the center of the cubic unit cell, note that this positive ion is attracted to $6 \mathrm{Cl}^{-}$ions at distance r^{*}, repelled by $12 \mathrm{Na}^{+}$ions at distance $\sqrt{2} r^{*}$ away, then attracted to 8 Cl - ions at distance $\sqrt{3} r^{*}$ away, and so on out to the edge of the crystal.

$$
\begin{aligned}
E_{N a^{+}}= & \frac{C}{r^{*}}\left(\frac{6}{1}-\frac{12}{\sqrt{2}}+\frac{8}{\sqrt{3}}-\frac{6}{\sqrt{4}}+\frac{24}{\sqrt{5}}+\ldots\right) \\
& =\frac{C}{r^{*}} M
\end{aligned}
$$

where the constant $M \approx 1.7475$ is the approximate value of the alternating series, and is termed the Madelung constant after its discoverer.
(a) Compute the bonding energy of a more simplified (non-real) crystal consisting of a long chain of alternating $\mathrm{Na}^{+}-\mathrm{Cl}^{-}$atoms, each spaced r^{*} apart.
(b) Compute the Taylor series approximation to $\ln (2)$ centered at the point $a=1$ and compare with (a).

