Handout 19

Recall: Given interval [a,b] we divide it into subintervals of equal size Ax, i.e.
xX;=a+ JjAx,j=0,1,...,n and define:
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For the rectangular domain [a,b]x[c,d]| we divide the rectangle into small sub-
rectangles R, = [xH,xi]x [yl;1 ,yl.] where x, =a+iAx,j=0,1,...,m, y,=c+ JjAy,j=0,1,....n
The area of R; iSAA=Ax-Ay.

The double Reimann sums which is also the approximation of the volume under
surface z=f(x,y) is given by sums of volumes of the form
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As usually we take the division of the rectangular into infinitely many infinitely small

sub-rectangles to get an exact value of the volume, thus V = lim ZZf( X ,y”)AA
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Definition: The double integral of z=f(x,y) over the rectangle R is given by
”f(x,y)dA = lim ZZf(x;,y”)AA if the limit exists.
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Conclusion: V = Hf(x,y)dA
R

Midpoint Rule: Let x, =a+iAx,j=0,1,...,m, y; = c+ jAy,j=0,1,...,n and midpoints
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Average value:
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Recall: Given f(x) on an interval [a,b] then f = ! J f(x)dx
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Given f(x,y) on rectangle R with area A(R) then f, = ﬁ”f(X,y)AA
R



Properties of Double Integrals:
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3) f(x.y)zg(x.y)= [[ £(x.y)A4= [[g(x.y)AA

Iterated Integrals:
d

Suppose f(x,y) defined on rectangle R =[a,b]x[c,d] and let g(x)= Jf(x,y)dy where
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the expression jf(x,y)dy is understood as a partial integration with respect toy, i.e. the

variable x considered a constant for the process of integration. Next we integrate g to get
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The last integral is called an iterated integral; we often omit the brackets and recognize
2 of them:

1) ij(x,y)dydx = }{jf(x,y)dy}dx 2) j}f(x,y)dxdy = j.{j.f(x,y)dx}dy

Theorem (Fubini’s): If f{x,y) is continuous on rectangle R =[a,b|x[c,d] (or atleast
bounded with discontinuities on a finite number of smooth curves) then

”f(x,y)dA: _ﬁf(x,y)dydx: j.if(x,y)dydx

Thm: Letf(xy) = g(x)h(y) then
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