Handout 16

Definition: A partial derivative of a function of several variables is a derivative with respect of one of those variables why the other variables consider constant. For a function f(x,y), the partial derivatives are:

$$D_{x}f = \frac{\partial}{\partial x}f(x,y) = f_{x}(x,y) = \lim_{h \to 0} \frac{f(x+h,y) - f(x,y)}{h}$$
$$D_{y}f = \frac{\partial}{\partial y}f(x,y) = f_{y}(x,y) = \lim_{h \to 0} \frac{f(x,y+h) - f(x,y)}{h}$$

For a function f(x,y,z), the partial derivatives are:

$$D_{x}f = \frac{\partial}{\partial x}f(x,y,z) = f_{x}(x,y,z) = \lim_{h \to 0} \frac{f(x+h,y,z) - f(x,y,z)}{h}$$

$$D_{y}f = \frac{\partial}{\partial y}f(x,y,z) = f_{y}(x,y,z) = \lim_{h \to 0} \frac{f(x,y+h,z) - f(x,y,z)}{h}$$

$$D_{z}f = \frac{\partial}{\partial z}f(x,y,z) = f_{z}(x,y,z) = \lim_{h \to 0} \frac{f(x,y,z+h) - f(x,y,z)}{h}$$

Similarly, for a function $f(x_1, x_2, ... x_n)$ the partial derivatives $D_1 f = f_1, D_2 f = f_2, ..., D_n f = f_n$

Higher derivatives

Partial derivatives of a function of several variables are functions of several variables, and therefore, may have their partial derivatives. We denote it as:

$$f_{xx} = \frac{\partial f}{\partial x^2}$$
 $f_{xy} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial f}{\partial y \partial x}$ $f_{yx} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial f}{\partial x \partial y}$ $f_{yy} = \frac{\partial f}{\partial y^2}$

Theorem: If f_{xy} , f_{yx} continuous on a disc around (a,b) then f_{xy} , $(a,b) = f_{yx}(a,b)$

Definition: Partial differential equations are differential equations that involve partial derivatives.

- Helmholtz equation $u_{xx} + u_{yy} + k^2 u = 0$.
- Laplace equation $u_{xx} + u_{yy} = 0$
- Heat equation $u_t = a^2 u_{xx}$
- Wave equation $u_{tt} = a^2 u_{xx}$

Note: A plane
$$\vec{n}(r-r_0) = \tilde{A}(x-x_0) + \tilde{B}(y-y_0) + \tilde{C}(z-z_0) = 0$$
 can be described as $z-z_0 = A(x-x_0) + B(y-y_0)$, where $A = \tilde{A}/\tilde{C}$, $B = \tilde{B}/\tilde{C}$

Definition: Let S be surface described by a function z=f(x,y) and suppose that f has continuous partial derivatives. An equation of the tangent plane to S at point $P(x_0, y_0, z_0)$ is given by: $z-z_0=f_x(x-x_0)+f_y(y-y_0)$ Similarly a surface defined by f(x,y,z)=0 the tangent plane is $f_x(x-x_0)+f_y(y-y_0)+f_z(z-z_0)=0$

Definition: A tangent plane to parametric surface $\vec{r}(u,v) = x(u,v)\mathbf{i} + y(u,v)\mathbf{j} + z(u,v)\mathbf{k}$ is given using a normal vector $\vec{n} = \vec{r}_u \times \vec{r}_v = \langle x_u, y_u, z_u \rangle \times \langle x_v, y_v, z_v \rangle$.

Definition: Suppose that a function f(x,y) has continuous partial derivatives. A function $L(x,y) = f(a,b) + f_x(a,b)(x-a) + f_y(a,b)(y-b)$ is called **linearization of** *f*.

A **linear approximation** or a **tangent plane approximation** of f at (a,b) is defined by $f(x,y) \approx f(a,b) + f_x(a,b)(x-a) + f_y(a,b)(y-b) = L(x,y)$ or equivalently $f(a+h_x,b+h_y) \approx f(a,b) + f_x(a,b)h_x + f_y(a,b)h_y$

We defined linear approximation for function with continuous partial derivatives, however what happens when the derivatives aren't continuous?

Definition: The function z=f(x,y) is **differentiable** at (a,b) if $\Delta z = \Delta f = f(a + \Delta x, b + \Delta y) - f(a,b)$ can be expressed in the form

$$\Delta z = f_x(a,b)\Delta x + f_y(a,b)\Delta y + \varepsilon_1(\Delta x,\Delta y)\Delta x + \varepsilon_2(\Delta x,\Delta y)\Delta y$$
 where $\lim_{(\Delta x,\Delta y)\to 0} \varepsilon_1(\Delta x,\Delta y) = 0$ and $\lim_{(\Delta x,\Delta y)\to 0} \varepsilon_2(\Delta x,\Delta y) = 0$

or equivalently $\Delta z = f_x(a,b)\Delta x + f_y(a,b)\Delta y + \varepsilon(\Delta x,\Delta y)\sqrt{\Delta x^2 + \Delta y^2}$ where

 $\lim_{(\Delta x, \Delta y) \to 0} \mathcal{E}(\Delta x, \Delta y) = 0$. The second form is more convenient for calculations, since one solves it for

$$\varepsilon(\Delta x, \Delta y) = \frac{f(a + \Delta x, b + \Delta y) - f(a, b) - f_x(a, b) \Delta x - f_y(a, b) \Delta y}{\sqrt{\Delta x^2 + \Delta y^2}}$$

Theorem: If the partial derivatives of *f* exists near (a,b) and continuous at (a,b) then f is differentiable.

Definition: An analogy to the differentials in 1D dy = f'(x)dx is called a **total differential** in 2D and 3D and is given by $df = f_x(x,y)dx + f_y(x,y)dy$ and $df = f_x(x,y,z)dx + f_y(x,y,z)dy + f_z(x,y,z)dz$ respectively.