Handouts 6

Theorem: If the power series $\sum_{n=0}^{\infty} c_n (x-a)^n$ has a radius of convergence R>0, then the function $f(x) = \sum_{n=0}^{\infty} c_n (x-a)^n$ is continues, differentiable and integrable on the interval

$$f'(x) = \frac{d}{dx} \sum_{n=1}^{\infty} c_n (x-a)^n = \sum_{n=1}^{\infty} \frac{d}{dx} c_n (x-a)^n = \sum_{n=1}^{\infty} n c_n (x-a)^{n-1}$$
$$\int f(x) dx = \int \sum_{n=1}^{\infty} c_n (x-a)^n dx = \sum_{n=1}^{\infty} \int c_n (x-a)^n dx = \sum_{n=1}^{\infty} c_n \frac{(x-a)^{n+1}}{n+1} + C$$

with the same radius of convergence R. However the convergence at end points may change.

Note: The theorem above state that the power series can be integrated/differentiated term-by-term. However, for other types of series of functions ($\sum_{n=0}^{\infty} c_n g_n(x)$) the situation is not as simple.

Taylor and Maclaurin Series (8.7)

Example: Consider that a function f has a representation as power series in some

interval
$$0 < |x-a| < R$$
. $f(x) = \sum_{n=0}^{\infty} c_n (x-a)^n = c_0 + c_1 (x-a) + c_2 (x-a)^2 + c_3 (x-a)^3 + \dots$
 $f(a) = c_0 + c_1 (a-a) + c_2 (a-a)^2 + c_3 (a-a)^3 + \dots = c_0$

$$f(a) = c_0 + c_1(a-a) + c_2(a-a) + c_3(a-a) + \dots = c_0$$
Note:
$$\frac{f'(a)}{f''(x)} = c_1 + 2c_2(a-a) + 3c_3(a-a)^2 + \dots = c_1 \\ f''(x) = 2c_2 + 2 \cdot 3c_3(a-a) + 3 \cdot 4c_4(a-a)^2 + \dots = 2c_2$$
, thus $c_n \Rightarrow c_n = \frac{f^{(n)}(a)}{n!}$

$$f^{(n)}(a) = 2 \cdot 3 \cdot 4 \cdots nc_n = n!$$

Theorem: If a function f has a power series representation (expansion) about a, that is

$$f(x) = \sum_{n=0}^{\infty} c_n (x-a)^n$$
, then $c_n = \frac{f^{(n)}(a)}{n!}$, i.e. $f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n$.

Definition: the series $f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n$ are called **Taylor series/expansion** of the function f (about/centered at) at a. For a special case a=0 the series

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n$$
 called **Maclaurin series**.

Definition: Taylor\Maclaurin polynomial is a partial sum of Taylor\Maclaurin series, i.e.

$$T_m = \sum_{n=0}^m \frac{f^{(n)}(0)}{n!} x^n$$
. The remainder is defined as $R_m(x) = f(x) - T_m(x)$

Theorem: If $f(x) = T_m(x) + R_m(x)$ and $\lim_{m \to \infty} R_m(x) = 0, \forall x \in (a - R, a + R)$ then

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n, \forall x \in (a-R,a+R).$$

Furthermore, if $\max_{|x-a| < d} \left| f^{(m+1)}(x) \right| = M$ (i.e. $\left| f^{(m+1)}(x) \right| \le M$, $\forall |x-a| < d$), where d > 0 is small positive number then $\left| R_m(x) \right| \le \frac{M}{(m+1)!} |x-a|^{m+1}$, $\forall |x-a| < d$

Definition: The numbers $\binom{k}{n} = \frac{k(k-1)(k-2)\cdots(k-n+1)}{n!}$ called binomial coefficients.

Important Maclaurin Series:

$$e^{x} = \sum_{k=0}^{\infty} \frac{x^{k}}{k!} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots, -\infty < x < \infty$$

$$\sin x = \sum_{k=0}^{\infty} (-1)^{k} \frac{x^{2k+1}}{(2k+1)!} = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} - \frac{x^{7}}{7!} + \dots, -\infty < x < \infty$$

$$\cos x = \sum_{k=0}^{\infty} (-1)^{k} \frac{x^{2k}}{(2k)!} = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} - \frac{x^{6}}{6!} + \dots, -\infty < x < \infty$$

$$\frac{1}{1-x} = \sum_{k=0}^{\infty} x^{k} = 1 + x + x^{2} + x^{3} + \dots, -1 < x < 1$$

$$\ln(1+x) = \sum_{k=0}^{\infty} (-1)^{k} \frac{x^{k+1}}{k+1} = x - \frac{x^{2}}{2} + \frac{x^{3}}{3} - \frac{x^{4}}{4} + \dots, -1 < x \le 1$$

$$\arctan x = \sum_{k=0}^{\infty} (-1)^{k} \frac{x^{2k+1}}{2k+1} = x - \frac{x^{3}}{3} + \frac{x^{5}}{5} - \frac{x^{7}}{7} + \dots, -1 \le x \le 1$$

$$(1+x)^{m} = 1 + mx + \frac{m(m-1)}{2!} x^{2} + \dots + \frac{m(m-1) \cdot \dots \cdot (m-k+1)}{k!} x^{k} + \dots, m \in \mathbb{R},$$

$$m \ge 0, \Rightarrow -1 \le x \le 1, -1 < m < 0, \Rightarrow -1 < x \le 1, m \le -1, \Rightarrow -1 < x < 1.$$