Handout 1

Definition: A **sequence** (or an **infinite sequence**) is a function $f: \mathbb{N} \to \mathbb{R}$ that often given as $f(n) = a_n$. We will often write sequences as $\{a_n\}_{n=1}^{\infty} = \{a_n\}_{n\in\mathbb{N}}$.

Definition: A **subsequence** is a sequence that can be derived from another sequence by deleting some elements without changing the order of the remaining elements.

Definition: A sequence $\{a_n\}$ has a limit L, i.e. $\lim_{n \to \infty} a_n = L$ or $a_n \to L$ as $n \to \infty$ if we can make the terms a_n as close to L as we like by taking n sufficiently large. If $\lim_{n\to\infty} a_n$ exists we say the sequence converges (convergent). Otherwise the sequence is diverges (divergent).

Thm: If $\lim_{x\to\infty} f(x) = L$, then the sequence $f(n) = a_n$ is convergent and $\lim_{n\to\infty} a_n = L$

Limits properties:

If a_n, b_n are convergent and c is constant then

1)
$$\lim (a_n \pm b_n) = \lim a_n \pm \lim b_n$$

1)
$$\lim_{n \to \infty} (a_n \pm b_n) = \lim_{n \to \infty} a_n \pm \lim_{n \to \infty} b_n$$

2) $\lim_{n \to \infty} ca_n = c \lim_{n \to \infty} a_n$ including $\lim_{n \to \infty} c = c$

3)
$$\lim_{n\to\infty} (a_n b_n) = \lim_{n\to\infty} a_n \lim_{n\to\infty} b_n$$

4)
$$\lim_{n\to\infty} \left(\frac{a_n}{b_n}\right) = \frac{\lim_{n\to\infty} a_n}{\lim_{n\to\infty} b_n}, \lim_{n\to\infty} b_n \neq 0$$

5)
$$\lim_{n\to\infty} a_n^p = \left(\lim_{n\to\infty} a_n\right)^p, p>0, a_n>0$$

The squeeze theorem for sequences: If $a_n \le b_n \le c_n$ and $\lim_{n \to \infty} a_n = L = \lim_{n \to \infty} c_n$ then $\lim_{n \to \infty} b_n = L$

Absolute Value Theorem:
$$\lim_{n\to\infty} |a_n| = 0 \Rightarrow \lim_{n\to\infty} a_n = 0$$
 (Since $-|a_n| \le a_n \le |a_n|$)

Thm: If
$$f$$
 is continuous function at L and $\lim_{n\to\infty} a_n = L$ then $\lim_{n\to\infty} f(a_n) = f(\lim_{n\to\infty} a_n) = f(L)$

Thm: If a sequence $\{a_n\}_{n=1}^{\infty}$ converges iff subsequences $\{a_{2n}\}_{n=1}^{\infty}$ and $\{a_{2n+1}\}_{n=1}^{\infty}$ does.

Thm: If a sequence $\{a_n\}_{n\in\mathbb{N}}^{\infty}$ converges iff all its subsequences converges.

Corollary: If there exists a divergent subsequence of $\{a_n\}_{n\in\mathbb{N}}^{\infty}$, then $\{a_n\}_{n\in\mathbb{N}}^{\infty}$ diverges.

Theorem: $\lim_{n \to \infty} r^n = \begin{cases} 0 & -1 < r < 1 \\ 1 & r = 1 \end{cases}$, When r > 1 the sequence tends to infinity, and it doesn't exists when r < -1 (the last 2 are divergent sequences).

Definition: A sequence $\{a_n\}$ is increasing if $a_n \le a_{n+1}$ for all $n \ge 1$. It is called decreasing if it is $a_n \ge a_{n+1}$ for all $n \ge 1$. A sequence is monotonic if it is either increasing or decreasing.

Definition: A sequence $\{a_n\}$ is bounded above if there is number M such that $a_n \le M, \forall n \ge 1$. It is bounded below if there is number m such that $a_n \ge m, \forall n \ge 1$. If it is bounded above and below it called bounded sequence.

Theorem: Every bounded, monotonic sequence is convergent.

Theorem: If $\{b_n\}$ is a subsequence of sequence $\{a_n\}$ obtained by deletion of its first n_0 (finite number) terms. Then $\{a_n\}$ converges iff $\{b_n\}$ does.

Monotonicity tests: 1) $\operatorname{sgn}(a_{n+1} - a_n)$ 2) Does $\frac{a_{n+1}}{a_n} < 1$ or $\frac{a_{n+1}}{a_n} > 1$?