Average value:

Recall: Given f(x) on an interval [a,b] then $f_{ave} = \frac{1}{b-a} \int_{a}^{b} f(x) dx$

Given f(x,y) on rectangle R with area A(R) then $f_{ave} = \frac{1}{A(R)} \iint_{R} f(x,y) \Delta A$

Ex 2. Let $z = x^2 - y$ be a shape of a "sand dune" in a box with a base of a 2x2 units size. Answer the following question using the course approximation of the volume of the sand from previous exercise. Could the entire dune be packed if a box has a height of 1 unit?

In previous question we found that the volume of $z=x^2-y$ on 2x2 square is approximately one, while height of the box should of average value, which is given by $f_{ave}=\frac{V}{A(R)}\approx\frac{1}{4}$. Therefore we will have more then enough place for our sand in that box.

Properties of Double Integrals:

1)
$$\iint_{R} f(x,y) + g(x,y)\Delta A = \iint_{R} f(x,y)\Delta A + \iint_{R} g(x,y)\Delta A$$

2)
$$\iint_{\mathbb{R}} cf(x,y) \Delta A = c \iint_{\mathbb{R}} f(x,y) \Delta A$$

3)
$$f(x,y) \ge g(x,y) \Rightarrow \iint_{\mathcal{D}} f(x,y) \Delta A \ge \iint_{\mathcal{D}} g(x,y) \Delta A$$

5.2 Iterated Integrals (12.2)

It won't be easy to evaluate double integral using the definition with the limits. In Calculus I The Fundamental Theorem of Calculus provided a more convenient way. In this section we will learn an easy method to solve double integrals.

Suppose f(x,y) defined on rectangle $R = [a,b] \times [c,d]$ and let $g(x) = \int_{c}^{d} f(x,y) dy$ where the

expression $\int_{c}^{d} f(x,y)dy$ is understood as a partial integration with respect to y, i.e. the variable x considered a constant for the process of integration. Next we integrate g to get

$$\int_{a}^{b} g(x)dx = \int_{a}^{b} \left\{ \int_{c}^{d} f(x,y)dy \right\} dx$$

The last integral is called an **iterated integral**; we often omit the brackets and recognize 2 of them:

1)
$$\int_{a}^{b} \int_{c}^{d} f(x,y) dy dx = \int_{a}^{b} \left\{ \int_{c}^{d} f(x,y) dy \right\} dx$$
 2) $\int_{c}^{d} \int_{a}^{b} f(x,y) dx dy = \int_{c}^{d} \left\{ \int_{a}^{b} f(x,y) dx \right\} dy$

Course: Accelerated Engineering Calculus II Instructor: Michael Medvinsky

Ex 3.
$$\iint_{R} ye^{x} dA = \int_{x=-1}^{1} \int_{y=0}^{1} ye^{x} dy dx = \int_{-1}^{1} \frac{y^{2}}{2} e^{x} \Big|_{0}^{1} dx = \frac{1}{2} \int_{0}^{1} e^{x} dx = \frac{1}{2} e^{x} \Big|_{-1}^{1} = \frac{e^{1} - e^{-1}}{2}$$
Ex 4.
$$\int_{x=0}^{1} \int_{y=0}^{x} y^{2} x dy dx = \int_{0}^{1} \left(\frac{y^{3}}{3} \cdot x \right)_{0}^{x} dx = \int_{0}^{1} \frac{x^{4}}{3} dx = \frac{x^{5}}{15} \Big|_{0}^{1} = \frac{1}{15}$$
Ex 5.
$$\int_{x=0}^{1} \int_{y=0}^{2} x + 3y^{2} + 2xy dy dx = \int_{0}^{1} \left(xy + y^{3} + \frac{1}{2} xy^{2} \right)_{0}^{2} dx =$$

$$= \int_{0}^{1} 2x + 2^{3} + \frac{1}{2} x2^{2} dx = 2 \int_{0}^{1} 2x + 4 dx = 2 \left(x^{2} + 4x \right)_{0}^{1} = 10$$
Ex 6.
$$\int_{y=0}^{2} \int_{x=0}^{1} x + 3y^{2} + 2xy dx dy = \int_{y=0}^{2} \left(\frac{1}{2} x^{2} + 3y^{2} x + x^{2} y \right)_{0}^{1} dy =$$

$$= \int_{y=0}^{2} \frac{1}{2} + 3y^{2} + y dy = \left(\frac{1}{2} y + y^{3} + \frac{1}{2} y \right)_{0}^{2} = \left(y + y^{3} \right)_{0}^{2} = 2 + 8 = 10$$

Thm (Fubini's): If f(x,y) is continuous on rectangle $R = [a,b] \times [c,d]$ (or at least bounded with discontinuities on a finite number of smooth curves) then

$$\iint\limits_R f(x,y)dA = \iint\limits_a^b f(x,y)dydx = \iint\limits_a^b f(x,y)dydx$$

We won't prove this theorem, but to make some sense, recall that $g(x_0) = \int_{c}^{d} f(x_0, y) dy$

represents area under curve described by $f(x_0,y)$ and therefore the volume is given by

$$\iint\limits_R f(x,y)dA = V = \int\limits_a^b g(x)dx = \int\limits_a^b \int\limits_c^d f(x,y)dydx$$
. Similarly for $\int\limits_c^d \int\limits_a^b f(x,y)dxdy$, just x and y change roles.

Thm: Let f(x,y) = g(x)h(y) then

$$\int_{a}^{b} \int_{c}^{d} f(x,y) dy dx = \int_{a}^{b} \int_{c}^{d} g(x) h(y) dy dx = \int_{a}^{b} g(x) dx \cdot \int_{c}^{d} h(y) dy$$

$$\int_{a}^{b} \int_{c}^{d} f(x,y) dx dy = \int_{a}^{d} \int_{c}^{b} g(x) h(y) dx dy = \int_{a}^{b} g(x) dx \cdot \int_{c}^{d} h(y) dy$$

$$\int_{x=0}^{1} \int_{y=0}^{1} yx dy dx = \int_{x=0}^{1} \left(\frac{y^{2}}{2}x\right)_{0}^{1} dx = \int_{x=0}^{1} \frac{1}{2}x dx = \left(\frac{1}{2}\frac{x^{2}}{2}\right)_{0}^{1} = \frac{1}{4}$$
Ex 7.
$$\int_{x=0}^{1} \int_{y=0}^{1} yx dy dx = \int_{x=0}^{1} x dx \cdot \int_{y=0}^{1} y dy = \left(\frac{y^{2}}{2}\right)_{0}^{1} \cdot \left(\frac{y^{2}}{2}\right)_{0}^{1} = \frac{1}{4}$$