## 3 Vector Functions

## 3.1 Vector Functions and Space Curves (10.1)

We have learned by now functions of one variable (and a little about functions of two variables). All these function were real valued function  $f:R\to R$  (and  $f:R^2\to R$ ), thus their result was a real number. Since we recently learned a (new) concept of vectors, we can now generalize functions to a vector valued functions. Such function are not totally new thing, we already met one of this kind (which one?).

**Def**: A vector-valued function is a function whose domain is a set of real numbers and a range is a set of vectors. We denote it as  $f: R \to R^2$  if a range of the function is set of 2D vectors or  $f: R \to R^3$  if the range is set of 3D vectors.

**Note**: we are most interested in  $f: R \rightarrow R^3$ 

## **Examples:**

- 1. General case:  $r(t) = \langle f(t), g(t), h(t) \rangle$
- 2. A linear function or a line:  $\vec{l}(t) = \langle a_1 t + b_1, a_2 t + b_2, a_3 t + b_3 \rangle$
- 3. Parabola in xy plane  $r(t) = \langle t, t^2, 0 \rangle$
- 4. A twisted cubic:  $r(t) = t i + t^2 j + t^3 k$
- 5. A helix  $r(t) = \cos t i + \sin t j + t k$
- 6. An opposite direction, different start point helix  $r(t) = \sin t i + \cos t j + t k$
- 7. Spiral along y-axis  $r(t) = \sin i + t$  j+  $\cos t$  k
- 8. Tornado  $\langle t\cos t, t\sin t, t\rangle$

**Def**: A limit of vector-valued function  $r(t) = \langle f(t), g(t), h(t) \rangle$  is given by

 $\lim_{t\to a} r(t) = \left\langle \lim_{t\to a} f(t), \lim_{t\to a} g(t), \lim_{t\to a} h(t) \right\rangle$  provided the limits of the component function exist.

Ex 1. 
$$\lim_{t \to \pi/2} \langle t, \sin t, 5t + 1 \rangle = \left\langle \frac{\pi}{2}, 1, \frac{5\pi}{2} + 1 \right\rangle$$

Ex 2. 
$$\lim_{t \to 0} \left\langle t^2, \frac{\sin t}{t}, \ln t \right\rangle = \left\langle \lim_{t \to 0} t^2, \lim_{t \to 0} \frac{\sin t}{t}, \lim_{t \to 0} \ln t \right\rangle = \left\langle 0, 1, -\infty \right\rangle - \text{divergent}$$

$$\lim_{t \to 0} \left\langle (1 + 2t)^{1/t}, t \ln t, (1 + 1/t)^t \right\rangle = \left\langle \lim_{t \to 0} (1 + 2t)^{1/t}, \lim_{t \to 0} \frac{\ln t}{t}, \lim_{t \to 0} (1 + 1/t)^t \right\rangle$$

$$\lim_{t \to 0} \left\langle (1+2t)^{1/t}, t \ln t, (1+1/t)^{t} \right\rangle = \left\langle \lim_{t \to 0} (1+2t)^{1/t}, \lim_{t \to 0} \frac{\ln t}{1/t}, \lim_{t \to 0} (1+1/t)^{t} \right\rangle =$$

Ex 3. 
$$= \left\langle e^{\lim_{t \to 0} \ln(1+2t)^{1/t}}, \lim_{t \to 0} \frac{1/t}{-1/t^2}, e^{\lim_{t \to 0} \ln(1+1/t)^t} \right\rangle = \left\langle e^{\lim_{t \to 0} \frac{\ln(1+2t)}{t}}, -\lim_{t \to 0} t, e^{\lim_{t \to 0} \ln(1+1/t)} \right\rangle$$

$$= \left\langle e^{\lim_{t \to 0} \frac{2/(1+2t)}{1}}, 0, e^{\lim_{t \to 0} \frac{\ln(1+1/t)}{1/t}} \right\rangle = \left\langle e^2, 0, e^{\lim_{t \to 0} \frac{(-1/t^2)/(1+1/t)}{-1/t^2}} \right\rangle = \left\langle e^2, 0, e^{\lim_{t \to 0} \frac{t}{t+1}} \right\rangle = \left\langle e^2, 0, 1 \right\rangle$$

Ex 4. Determine the shape of the intersection between cylinder  $x^2 + (y-1)^2 = 2$  and a plane y+z=4

We know that projection of  $x^2+(y-1)^2=2$  on xy plane is a circle of radius  $\sqrt{2}$  centered at (0,1) therefore we can rewrite it as  $x=\sqrt{2}\cos t, y-1=\sqrt{2}\sin t, 0\le t\le 2\pi$ . We plug it in the equation of the plane solved for z to get  $y+z=4\Rightarrow z=4-y=4-\left(\sqrt{2}\sin t+1\right)=3-\sqrt{2}\sin t$  for  $0\le t\le 2\pi$ .

Thus  $\vec{r}(t) = \langle \sqrt{2} \cos t, \sqrt{2} \sin t + 1, 3 - \sqrt{2} \sin t \rangle$  for  $0 \le t \le 2\pi$ .

This curve is an ellipse since

$$\frac{x^2}{2} + \frac{(y-1)^2}{4} + \frac{(z-3)^2}{2} = \cos^2 t + \frac{\sin^2 t}{2} + \frac{\sin^2 t}{2} = 1$$

Ex 5. Find expression of a unit circle on a y+z=4 plane.

We need to find  $v = \langle v_1, v_2, v_3 \rangle$  such that  $v_1^2 + v_2^2 + v_3^2 = 1$  and  $v_2 + v_3 = 4$ , i.e.  $v = \langle v_1, v_2, 4 - v_2 \rangle$  and  $v_1^2 + v_2^2 + (4 - v_2)^2 = 1$ , thus  $x^2 + y^2 + (4 - y)^2 = 1$ .

Ex 6. Find formula of the line that connect between points  $P_0(1,2)$  and  $P_1(3,5)$ 

An "old" approach: 1) find a slope  $m = \frac{y_1 - y_0}{x_1 - x_0} = \frac{5 - 2}{3 - 1} = \frac{3}{2}$  2) use line formula

$$(y-y_0) = (x-x_0)m \Rightarrow y-2 = (x-1)\frac{3}{2} \Rightarrow y = \frac{3}{2}x - \frac{3}{2} + 2 = \frac{3}{2}x + \frac{1}{2}$$

A vector approach from 9.5:

$$l(t) = (1-t)\langle 1,2\rangle + t\langle 3,5\rangle = \langle 1-t+3t,2-2t+5t\rangle = \langle 1+2t,2+3t\rangle$$

One can verify this equation is similar to previous one

$$x = 1 + 2t \Rightarrow t = \frac{x - 1}{2}$$

$$y = 2 + 3t = 2 + 3 \cdot \frac{x - 1}{2} = 2 + \frac{3}{2}x - \frac{3}{2} = \frac{3}{2}x + \frac{1}{2}$$

Ex 7. Find a vector line equation between  $P_0(1,0,-1)$  and  $P_1(2,1,7)$ 

$$l(t) = (1-t)\langle 1,0,-1\rangle + t\langle 2,1,7\rangle = \langle 1-t+2t,0+t,t-1+7t\rangle = \langle 1+t,t,8t-1\rangle$$