1.3.4 Absolute convergence

Def: A series $\sum a_n$ is called absolutely convergent if the series of absolute values $\sum |a_n|$ is convergent.

Thm: If a series $\sum a_n$ is absolutely convergent then it is convergent.

It is true because 1) $0 \le a_n + |a_n| \le 2|a_n|$, 2) $\sum |a_n|$ is convergent and so $2\sum |a_n|$ and by comparison test ($\sum (a_n + |a_n|) \le 2\sum |a_n|$) also $\sum a_n + |a_n|$ is convergent. Finally

$$\sum a_n = \sum (a_n + |a_n|) - \sum |a_n|$$

Def: A series $\sum a_n$ is called conditionally convergent if $\sum a_n$ converges but $\sum |a_n|$ diverges.

Ex 1. $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^2} = 1 - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \frac{1}{5^2} - \frac{1}{6^2} + \frac{1}{7^2} - \frac{1}{8^2} \dots \text{ is absolutely convergent since}$ $\sum_{n=1}^{\infty} \left| \frac{(-1)^{n-1}}{n^2} \right| = \sum_{n=1}^{\infty} \frac{1}{n^2} \text{ is convergent.}$

Ex 2. $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6}$... is convergent due to alternating series theorem: 1) $b_{n+1} = \frac{1}{n+1} < \frac{1}{n} = b_n$ and 2) $\lim_{n \to \infty} b_n = \lim_{n \to \infty} \frac{1}{n} = 0$

However, it is not absolutely convergent since $\sum_{n=1}^{\infty} \left| \frac{(-1)^{n-1}}{n} \right| = \sum_{n=1}^{\infty} \frac{1}{n}$ is divergent.

1.3.5 The Ratio Test

The following test is very useful in determining absolute convergence.

The ratio test theorem:

- If $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = L < 1$ then the series $\sum a_n$ is absolutely convergent (and therefore convergent)
- If $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = L > 1$ (including $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = \infty$) then the series $\sum a_n$ divergent.
- If $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = 1$ then the ratio test inconclusive, that is we have to use another method to determine convergence or divergence of $\sum a_n$.

Course: Accelerated Engineering Calculus II Instructor: Michael Medvinsky

Ex 3.
$$\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n\to\infty} \frac{1/(n+1)^p}{1/n^p} = \lim_{n\to\infty} \frac{n^p}{(n+1)^p} = \left(\lim_{n\to\infty} \frac{n}{n+1} \right)^p \to 1 \text{ , thus the ratio test is }$$

inconclusive in case of p-series. Indeed we know that it may converge or diverge depends of value of p, while the ratio test is independent of that value.

Ex 4.
$$\left| \frac{a_{n+1}}{a_n} \right| = \left| \frac{\left(-1\right)^{n+1} \left(n+1\right)^5 / 7^{n+1}}{\left(-1\right)^n n^5 / 7^n} \right| = \frac{7^n}{7^{n+1}} \left(\frac{n+1}{n} \right)^5 = \frac{1}{7} \left(1 + \frac{1}{n} \right)^5 \to \frac{1}{7} < 0 , \text{ thus } \sum (-1)^n \frac{n^5}{7^n}$$
 converges.

Ex 5.
$$\left| \frac{a_{n+1}}{a_n} \right| = \frac{(n+1)!}{(n+1)^{n+1}} \cdot \frac{n^n}{n!} = \frac{n!}{(n+1)!} \cdot \frac{n^n}{n!} = \left(\frac{n}{n+1}\right)^n = \left(\frac{n+1}{n}\right)^{-n} = \left(\left(1 + \frac{1}{n}\right)^n\right)^{-1} \to \frac{1}{e} < 1$$
thus $\sum \frac{n!}{n^n}$ converges. Similarly, $\sum \frac{n^n}{n!}$ diverges, since $\left| \frac{a_{n+1}}{a_n} \right| \to e > 1$.

1.3.6 Estimating Sums

1.3.6.1 Remainder Estimate for the Integral Test

Thm: Let $a_k = f(k)$, where f(x) is a continues, positive, decreasing function for $x \ge n$ (these are conditions for a integral test). Consider that $S = \sum_{n=1}^{\infty} a_n$ is convergent series. Let $S_m = \sum_{n=1}^{m} a_n$ be a partial sum and $R_m = S - S_m = \sum_{n=m+1}^{\infty} a_n$ is the remainder, then $\int_{m+1}^{\infty} f(x) \le R_m \le \int_{m}^{\infty} f(x)$.

Ex 6. a) How good
$$S_3$$
 estimates $S = \sum_{n=1}^{\infty} \frac{1}{n^2 + 1}$?

$$\sum_{1}^{3} \frac{1}{n^{2} + 1} = \frac{1}{1 + 1} + \frac{1}{4 + 1} + \frac{1}{9 + 1} = \frac{1}{2} + \frac{1}{5} + \frac{1}{10} = \frac{5 + 2 + 1}{10} = \frac{8}{10}$$

By the theorem above

$$R_3 \le \int_3^\infty \frac{dx}{x^2 + 1} = \lim_{t \to \infty} \int_3^t \frac{dx}{x^2 + 1} = \lim_{t \to \infty} \arctan x \Big|_3^t = \lim_{t \to \infty} \left(\arctan t - \arctan 3\right) = \frac{\pi}{2} - \arctan 3 \approx 0.321$$

so the estimation isn't that good.

b) Can we improve the estimation without calculating more terms? According to estimating theorem

$$\int_{m+1}^{\infty} f(x) \le R_m = S - S_m \le \int_{m}^{\infty} f(x) \Rightarrow S_m + \int_{m+1}^{\infty} f(x) \le S \le S_m + \int_{m}^{\infty} f(x)$$
so $1.04498 \approx \frac{8}{10} + \frac{\pi}{2} - \arctan 4 = \frac{8}{10} + \int_{-\infty}^{\infty} f(x) \le S \le \frac{8}{10} + \int_{m}^{\infty} f(x) = \frac{8}{10} + \frac{\pi}{2} - \arctan 3 \approx 1.12175$

One can take a midpoint of this approximation, to get $S \approx 1.08336$. The more precise sum is S = 1.07667, so it is clear that we improved the approximation (for $R_m \approx -6.69 \times 10^{-3}$).

c) How many terms do we need in order to make $R_n < 10^{-3}$.

$$R_m \le \int_{m}^{\infty} \frac{dx}{x^2 + 1} = \lim_{t \to \infty} \int_{m}^{t} \frac{dx}{x^2 + 1} = \lim_{t \to \infty} \arctan x \Big|_{m}^{t} = \lim_{t \to \infty} \left(\arctan t - \arctan m\right) = \frac{\pi}{2} - \arctan m$$

so we look for *m* such that

$$\frac{\pi}{2} - \arctan m < 10^{-3} \Rightarrow \arctan m > \frac{\pi}{2} - 10^{-3} \Rightarrow m > \tan\left(\frac{\pi}{2} - 10^{-3}\right) = 1000$$

1.3.6.2 Alternating Estimation Theorem

Thm: If an alternating series $S = \sum b_n = \sum (-1)^n a_n$ satisfy $a_{n+1} \le a_n$ and $\lim_{n \to \infty} a_n = 0$ then $|R_m| = |S - S_m| \le b_n$

Ex 7. How many terms are needed to approximate $\sum (-1)^n \frac{1}{n^3}$ so that the approximation is accurate to within 10^{-3} . Answer $\frac{1}{n^3} < 10^{-3} \Rightarrow n^3 > 10^3 \Rightarrow n > 10$