1.3 Convergence Tests + Estimating Sums (8.3-8.4)

When a sequence of partial sum $\{S_n\}$ of a series has a simple formula it is easy to find the sum, however this is not always the case. We will learn several convergence tests that doesn't require evaluating a sum. In some cases these methods lead to estimating of the sum

1.3.1 The Integral test

Theorem: Let f be continues, positive decreasing function on $[m,\infty)$ and let $a_n = f(n)$ for $n \ge m$ then the series $\sum_{n=m}^{\infty} a_n$ converges if and only if $\int_{m}^{\infty} f(x) dx$.

Note: Since finite number of terms cannot affect convergence of infinite series, it is enough that f(x) decreasing on $[M,\infty)$ where M>m.

The following graphical examples intuitively explain the theorem.

- The graph of the area under $\frac{1}{x^2}$ is a convergent integral. This area bound the series $\sum_{n=1}^{\infty} \frac{1}{n^2}$; therefore convergent (to $\frac{\pi^2}{6}$, the proof is out of our scope).
- The area under $\frac{1}{x}$ is infinite, i.e. divergent improper integral; therefore the series $\sum_{n=1}^{\infty} \frac{1}{n} > \int_{1}^{\infty} \frac{1}{x} dx$ are also divergent.

Ex 1. Determine whether the series $\sum_{n=1}^{\infty} ne^{-n^2}$ converges or diverges

Since we want to use integral test, we first show that $f(x) = xe^{-x^2}$ is positive and decreasing on $[1,\infty]$. The function is trivially positive, since both x and exponent are positive on $[1,\infty]$. To show it is decreasing function we will look at derivative

 $f'(x) = e^{-x^2} - 2x^2e^{-x^2} = (1-2x^2)e^{-x^2} = 0 \Leftrightarrow 1-2x^2 = 0 \Leftrightarrow x^2 = \frac{1}{2} \Leftrightarrow x = \pm \frac{1}{\sqrt{2}}$, neither in our scope, so no critical points in $[1,\infty]$, i.e. the first derivative doesn't change the sign in $[1,\infty]$. Therefore, we can check the sign of the first derivative at any x > 1, e.g. f(2) < 0. Thus, we can proceed with the integral test.

Course: Accelerated Engineering Calculus II Instructor: Michael Medvinsky

$$\int_{1}^{\infty} x e^{-x^{2}} dx = \int_{1}^{\infty} -\frac{1}{2} \frac{d}{dx} e^{-x^{2}} dx = -\frac{1}{2} \lim_{\lambda \to \infty} \int_{1}^{\lambda} \frac{d}{dx} e^{-x^{2}} dx = -\frac{1}{2} \lim_{\lambda \to \infty} \left(e^{-x^{2}} \right)_{1}^{\lambda} = -\frac{1}{2} \lim_{\lambda \to \infty} \left(e^{-\lambda^{2}} - e^{-1} \right) = \frac{1}{2e}$$

Therefore $\sum_{n=1}^{\infty} ne^{-n^2}$ converges.

Ex 2. For what values of p is the series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ convergent?

For p<0: $\sum_{n=1}^{\infty} \frac{1}{n^p} = 1 + 2^{|p|} + 3^{|p|} + ... = \infty$, another method $\lim_{n \to \infty} \frac{1}{n^p} = \infty \neq 0$, any way it diverges.

For p=0: $\sum_{n=1}^{\infty} \frac{1}{n^p} = 1 + 1 + 1 + \dots = \infty$, another method $\lim_{n \to \infty} \frac{1}{n^p} = 1 \neq 0$, anyway it diverges.

If p>0, then $f(x) = \frac{1}{x^p}$ is positive and decreasing on $[1, \infty]$.

$$\int_{1}^{\infty} \frac{1}{x^{p}} dx = \lim_{t \to \infty} \frac{x^{-p+1}}{-p+1} \Big|_{1}^{t} = \lim_{t \to \infty} \frac{t^{-p+1} - 1}{p-1} = \frac{1}{p-1} \lim_{t \to \infty} \left(t^{1-p} - 1\right) = \begin{cases} \text{convergent}\left(\frac{1}{1-p}\right) & p > 1\\ \text{divergent}\left(\frac{1}{\|\infty\|}\right) & 0$$

1.3.2 Comparison Tests

1.3.2.1 The Comparison Test

Thm: Let $\sum a_{\scriptscriptstyle n}, \sum b_{\scriptscriptstyle n}$ be series with $a_{\scriptscriptstyle n}, b_{\scriptscriptstyle n} \geq 0$, then

- If $\sum b_n$ is convergent and $a_n \le b_n$ then $\sum a_n$ is also convergent
- If $\sum b_n$ is divergent and $a_n \ge b_n$ then $\sum a_n$ is also divergent

Ex 3.
$$\frac{1}{2^n + 1} < \frac{1}{2^n} \Rightarrow \sum_{n=1}^{\infty} \frac{1}{2^n + 1} < \sum_{n=1}^{\infty} \frac{1}{2^n} = 1$$
, thus $\frac{1}{2^n + 1}$ convergent

Ex 4.
$$\frac{2n-1}{7n^3 + 5n^2 + 2} < \frac{2n}{7n^3} = \frac{2}{7n^2} \Rightarrow \sum_{n=1}^{\infty} \frac{2n}{7n^3} < \frac{2}{7} \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{2}{7} \frac{\pi^2}{6} = \frac{\pi^2}{21}, \text{ thus } \frac{2n-1}{7n^3 + 5n^2 + 2} \text{ is }$$

convergent

Ex 5.
$$\frac{1}{\sqrt{n}} = \frac{\sqrt{n}}{n} \ge \frac{1}{n}$$
, thus $\frac{1}{\sqrt{n}}$ is divergent.

1.3.2.2 The Limit Comparison Test

Thm: Let $\sum a_n, \sum b_n$ be series with $a_n, b_n \ge 0$. If $\lim_{n \to \infty} \frac{a_n}{b_n} = c$ where c > 0 is a finite constant, then either both series converge or both diverge.

Course: Accelerated Engineering Calculus II Instructor: Michael Medvinsky

Ex 6. Determine whether $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \frac{n^2}{n^3 + 1}$ is converges or diverges. We choose $\sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} \frac{1}{n}$ for a limit comparison test:

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{\frac{n^2}{n^3 + 1}}{\frac{1}{n}} = \lim_{n \to \infty} \frac{n^3}{n^3 + 1} = \lim_{n \to \infty} \frac{1}{1 + \frac{1}{n^3}} = 1$$

Thus, we got $\sum_{n=1}^{\infty} \frac{n^2}{n^3 + 1}$ is divergent.

1.3.3 Alternating Series

 $\sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} (-1)^n \, a_n = -a_1 + a_2 - a_3 + a_4 - + \dots$ are alternating series. $\sum_{n=1}^{\infty} c_n = \sum_{n=1}^{\infty} (-1)^{n-1} \, a_n = a_1 - a_2 + a_3 - a_4 + - \dots$

Thm: If an alternating series, either $\sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} (-1)^n a_n = -a_1 + a_2 - a_3 + a_4 - + \dots$ or

$$\sum_{n=1}^{\infty} c_n = \sum_{n=1}^{\infty} (-1)^{n-1} a_n = a_1 - a_2 + a_3 - a_4 + \dots, \text{ where } a_n > 0 \text{ satisfy}$$

- 1) $a_{n+1} \le a_n$ and
- $2) \lim_{n\to\infty} a_n = 0$

Then the series are converges.

Ex 7. Test the following series for convergence $\sum_{k=2}^{\infty} \frac{(-1)^{k+1}}{k \ln k}$

Consider $f(x) = \frac{1}{x \ln x}$, one found $f'(x) = \frac{-\left(\ln x + x \cdot \frac{1}{x}\right)}{\left(x \ln x\right)^2} = \frac{-\left(\ln x + 1\right)}{\left(x \ln x\right)^2} < 0, \forall x \ge 2 \text{ that } f \text{ is decreasing function.}$ Thus $a_{k+1} = \frac{1}{(k+1)\ln(k+1)} \le \frac{1}{k \ln k} = a_k$. Furthermore $\lim_{k \to \infty} = \frac{1}{k \ln k} = 0$, therefore the series $\sum_{k=2}^{\infty} \frac{(-1)^{k+1}}{k \ln k}$ converges.

Ex 8. The series $\sum_{n=1}^{\infty} (-1)^n \frac{7n^2}{3n^2 - 4}$ diverges since $\lim_{n \to \infty} \frac{7n^2}{3n^2 - 4} = \lim_{n \to \infty} \frac{7}{3 - \frac{4}{n^2}} = \frac{7}{3}$.