4 Logarithmic functions (1.6)

If $1 \neq a>0$, the function a^{x} is either strictly increasing or strictly decreasing. This is definitely one-to-one function and is onto \mathbb{R}^{+}, therefore the inverse function is exists. Furthermore, it is a Logarithmic function: $\log _{a} x=y \Leftrightarrow a^{y}=x$

Ex 1. $\log _{10} 0.001=-3$ and $10^{-3}=0.001$
A property of inverse function gives: $\begin{aligned} & \log _{a} a^{x}=x, \forall x \in \mathbb{R} \\ & a^{\log _{a} x}=x, \forall x>0\end{aligned}$ particularly $\log _{a} a=1$.

Laws of logarithm:

$$
\begin{aligned}
& \log _{a}(x y)=\log _{a} x+\log _{a} y \\
& \log _{a}(x / y)=\log _{a} x-\log _{a} y \\
& \log _{a} x^{r}=r \log _{a} x, \forall r \in \mathbb{R}
\end{aligned}
$$

Change of base: $\log _{a} x=\frac{\log _{b} x}{\log _{b} a}$
Common bases: 2, $e, 10$, they often denoted as $\log _{2}=\lg$ (binary logarithm, often used in computer sciences) $\log _{10}=$ Log (decadic \backslash decimal logarithm, last time I met it was in my school) , $\log _{e}=\ln$ (natural logarithm, most convenient form for math and for this course).

Ex 2. Compute following logs

$$
\log _{2} 32=\log _{2} 2^{5}=5
$$

Solution: $\log _{2} \frac{1}{16}=\log _{2} 1-\log _{2} 16=0-4=-4$

$$
\log _{32} 16=\frac{\log _{2} 16}{\log _{2} 32}=\frac{\log _{2} 2^{4}}{\log _{2} 2^{5}}=\frac{4}{5}
$$

Ex 3. Solve the equation $\ln (3+x)+\ln (1+x)=3 \ln 2$

$$
\begin{aligned}
& \ln (3+x)(1+x)=\ln 2^{3} \Rightarrow(3+x)(1+x)=8 \\
& 3+4 x+x^{2}=8 \Rightarrow x^{2}+4 x-5=0 \Rightarrow x=\frac{-4 \pm \sqrt{16+20}}{2}=\frac{-4 \pm 6}{2}=1, \not \models 5
\end{aligned}
$$

Note that the solution of quadratic equation, -5 , will lead to log of negative number which is undefined. Therefore -5 don't solve the original equation.

Verification: ${ }^{\ln (3-5)+\ln (1-5)}=\ln (-2)+\ln (-4)$

$$
\begin{gathered}
\ln (3+1)+\ln (1+1)=\ln 4+\ln 2=\ln 8=3 \ln 2 \\
3 e^{2 x}-8 e^{x}+16=0 \\
4 e^{2 x}-e^{2 x}-8 e^{x}+16=0
\end{gathered}
$$

Ex 4. Solve equation $\left(2 e^{x}\right)^{2}-2 \cdot 4 \cdot e^{x}+4^{2}-e^{2 x}=\left(2 e^{x}-4\right)^{2}-e^{2 x}=0$

$$
2 e^{x}-4= \pm e^{x} \Rightarrow 2 e^{x} \pm e^{x}=4 \Rightarrow\left\{\begin{array} { l }
{ 3 e ^ { x } = 4 } \\
{ e ^ { x } = 4 }
\end{array} \Rightarrow \left\{\begin{array}{l}
x=\ln \frac{4}{3} \\
x=\ln 4
\end{array}\right.\right.
$$

5 Parametric Curves (1.7)

Consider you observe a flying insect and want to describe the trajectory of it's flight. It is impossible to describe that curve by an equation of the form $\mathrm{y}=\mathrm{f}(\mathrm{x})$, because it isn't function (see example).

Parameterization of curves is the solution to the problem above. A parametric curve is defined by pair of functions $\mathrm{x}=\mathrm{f}(\mathrm{t})$ and $\mathrm{y}=\mathrm{g}(\mathrm{t})$ where t is the parameter. One can think about regular curve that represent a function as a (degenerated) parametric curve with $f(t)=t$.

Ex 5. Write a parametric form $x=y^{2}$ and sketch it.
Solution: $x=t^{2}, y=t$

Ex 6. Sketch $x=\sqrt{t}, y=1-t$

Solution:

t	0	1	4	9
x	0	1	2	3
y	1	0	-3	-8

Note that if we substitute $t=x^{2}$ we get parabola $y=1-x^{2}$, however the parameterization doesn't defined on the same domain as the parabola.

Ex 7. Sketch $x=\cos t, y=\sin$ at for $\mathrm{a}=1,2,3$

