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4 Logarithmic functions (1.6) 
If 1 0a≠ > , the function xa is either strictly increasing or strictly decreasing. This is 
definitely one-to-one function and is onto +

 , therefore the inverse function is exists. 
Furthermore, it is a Logarithmic function: log y

a x y a x= ⇔ =  

Ex 1. 10log 0.001 3= −  and 310 0.001− =   

A property of inverse function gives: 
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Laws of logarithm: 
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Change of base: loglog
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Common bases: 2, e, 10, they often denoted as 2log lg= (binary logarithm, often used 
in computer sciences) 10log Log= (decadic\decimal logarithm, last time I met it was in 
my school) , log lne = (natural logarithm, most convenient form for math and for this 
course). 

Ex 2. Compute following logs 
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Ex 3. Solve the equation ( ) ( )ln 3 ln 1 3ln 2x x+ + + =

( )( ) ( )( )3
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Note that the solution of quadratic equation, -5, will lead to log of negative 
number which is undefined. Therefore -5 don’t solve the original equation. 
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Verification: ( ) ( ) ( ) ( )ln 3 5 ln 1 5 ln 2 ln 4− + − = − + −

( ) ( )ln 3 1 ln 1 1 ln 4 ln 2 ln8 3ln 2+ + + = + = =
 

Ex 4. Solve equation ( ) ( )
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5 Parametric Curves (1.7) 
Consider you observe a flying insect and want to describe 
the trajectory of it’s flight. It is impossible to  describe that 
curve by an equation of the form y=f(x), because it isn’t 
function (see example).  

Parameterization of curves is the solution to the problem above.  A parametric curve 
is defined by pair of functions x=f(t) and y=g(t) where t is the parameter. One can 
think about regular curve that represent a function as a (degenerated) parametric curve 
with f(t)=t. 

Ex 5. Write a parametric form 2x y=  and sketch it. 

Solution: 2 ,x t y t= =   

Ex 6. Sketch , 1x t y t= = −  

Solution:  

t 0 1 4 9 
x 0 1 2 3 
y 1 0 -3 -8 
Note that if we substitute 2t x=  we get parabola 21y x= − , however the 
parameterization doesn’t defined on the same domain as the 
parabola. 

Ex 7. Sketch cos , sinx t y at= =  for a=1,2,3 
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