References:

  1. Adams, J., Barbasch D., Vogan, D.A., The Langlands classification and irreducible characters for real reductive groups, Progress in Mathematics, Birkhäuser, 1992.
  2. Borel, A. et al., Algebraic D-Modules, Progress in Mathematics, Academic Press, 1987.
  3. Beilinson, A.A., Bernstein, J.N., Localisation de g-modules, C. R. Acad. Sci. Paris, Sér. 1, 292, 15-18, 1981.
  4. Beilinson, A.A., Bernstein, J.N., A Proof of Jantzen Conjectures, Advances in Soviet Math., Vol. 16, Part 1, 1-50, 1993.
  5. Beilinson, A.A, Bernstein J.N., Deligne, P., Faisceaux pervers, Astérisque, 100, 1982.
  6. Beilinson, A.A., Localization of representations of reductive Lie algebras, in Proceedings of the ICM Warszawa 1983, 699-709.
  7. Bernstein, J.N., Algebraic theory of D-modules
  8. Bernstein, J.N., Gelfand, S.I., Tensor products of finite and infinite representations of semisimple Lie algebras. Compositio Math., 41, 245-285, 1980.
  9. Beilinson, A., Ginzburg, V., Soergel, W., Koszul Duality Patterns in Representation Theory, preprint, 1991.
  10. Humphreys, J.E., Introduction to Lie algebras and representation theory, Graduate Texts in Math, vol. 9, Springer, 1970.
  11. Kashiwara, M., Representation theory and D-modules on flag varieties, Astérisque, 173-174, 55-109, 1989.
  12. Kashiwara, M., D-modules and representation theory of Lie groups. Annales de l'Institut Fourier, 43, 1597-1618, 1993.
  13. Knapp, A.W., Representation theory of semisimple Lie groups, Princeton University Press, 1986.
  14. Milicic, D., Localization and Representation Theory of Reductive Lie Groups, book in preparation.
  15. Milicic, D., Algebraic D-modules and representation theory of semisimple Lie groups, Analytic Cohomology and Penrose Transform, M. Eastwood, J.A. Wolf, R. Zierau, editors, Contemporary Mathematics, Amer. Math. Soc, Vol. 154 (1993), 133-168.
  16. Schmid, W., Construction and classification of irreducible Harish-Chandra modules, in Harmonic analysis on reductive Lie groups, Sally, Barker, editors, Progress in Mathematics, 101, Birkhäuser, 1991, 235-275.
  17. Soergel, W., Gradings on Representation Categories, to appear in the proceedings of the ICM, Zürich, 1994.
  18. Springer, T.A., Quelques applications de la cohomologie d'intersection, exp. 589 in Séminaire Bourbaki 1981/82, Astérisque, 92-93, 249-273, 1982.
  19. Vogan, D.A., The local Langlands conjecture, in Adams et al., editors, Contemporary Mathematics, Vol. 145, Amer. Math. Soc., 1993, 417-423.
  20. Wallach, N.A., Real reductive groups I, Academic Press, 1988.
Back to AG page