FUNCTIONS

Functions provide a means of expressing relationships between variables. The val-
ues of these variables can be numbers OF nonnumerical objects such as geometric fig-
ures. functions, of nonmathematical objects. Many of the functions that you have
studied 0 mathematics are real functions; that 1s, functions relating two variables x
and y whose yalues are real numbers. Among the familiar types of real functions arc
potynomial and rational functions as well as trigonometric, exponential. and loga-
rithmic funciions. Ty’pica}i}f, real functions are prescribed by formulas of the form

y = f{x),suchasy = 2¢° X5 Y T sin(x7), 01y = 2% and much of what you have

jearned about analyzing and using real functions has depended on making use of
formulas such as these.

Even functional relationships that ar¢ simple to describe may tead to functional
formulas that are relatively compiex. Consider, for example, the function ihat
expresses the yolume V of fuel in an underground cylindrical cank of length € and
radius r whose axis 18 horizonial, in terms of the depth d of the fuel (Figure 1)-

Geomelric analysis of this relationship leads to the rather complicated

formula:
; 2 b1 d . e
"f' = f(d) = {\ are — e oS ; — 1 + (d. . r} \; ?_,rd — d"

Functional relationships of this complexity are often difficult to analyze purety on
the basis of formula manipulation. For example, it seems reasonable that the depth
d of fuel in the tank s also a function of the volume V' of fuel: that is, that the func-
tionV = f(d)canbe <ipverted” to obtain a functiond = [ “Y(V). From its definition.
the inverse f “1 axists because, for any given volume v of fuel between U and the
capacity of the tank, pouring that amount of fuel into the tank would fill the tank o

one ang only one jevel d = f (V). Howevel, solving the equaiion

, 2 i T
V= E(n’rb —r cos"‘(%: - }) +(d - r\Vaird - d'”)

s of Visnot feasible. Consequently, we cannot find a formula for f o
&7

for d in term
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Without a formula, how can we show mathematically that this inverse function exists?
The answers 1o this question and others like it often rest on qualitative features of the
functional relationship that may not be apparent from the functional formula. Our
look at some familiar real functions in this chapter focuses on features of these func-
tions that may not have been emphasized in your previous courses.

In prior courses, you have also studied many other types of functions that are
not real functions. Geometric transformations such as reflections, {ranslations, and
rotations are functions relating variables whose values are points or geometric figures.
Operations such as addition and multiplication for numbers and functions, the dot
product and length for vectors, and determinants of square matrices are functions
whose independent and/or dependent variables have values that are not real numbers.
In Chapter 2, we used the special type of function called a one-to-one correspon-
dence to show that certain pairs of infinite sets have the same cardinality. Thus, the
function concept arises in & wide variety of mathematical contexts. Part of the pur-
pose of this chapter is to illustrate this diversity and to discuss the common ideas
about function that are relevant in all or most of these contexts.

finitions, Historical Evolution,

and Basic Machinery of Functions

3.1.1

~ 'Definition

We begin this chapter by asking “What is a function?” In mathematics, it 1s common
to answer the question “Whatisa 7" by giving a definition of . We use det-
initions in mathematics as we do in everyvday speech, to help us understand the mean-
ing of an idea and the context in which we use it. Definitions in mathematics also serve
another purpose. They are powerful resources for facilitating a proof or solving a
problem-—providing specific information about the meaning of each condition in the
proot or problem.

As important as definitions are, however, they can sometimes mask alternative
ways in which an idea can be approached or described, and may not signal why the
idea is important. A full answer to “"What is a 7" inciudes not only a formal
definition, bul also alternate definitions and descriptions, why the 1dea has been
defined, how the idea is described, and to what purposes the idea is put. A full answer
leads us to concept analysis.

What is a function?

The idea of a functien fis to express a relationship between the elements of two seis.
if A and B are sets, then a function [ from A to B is often described as a rude or
process that associates with each element ¢ of the set A one and only one element b
of the set B. We often think of each élement in the first set as defermining the corre-
sponding element of the second set.

A function is a rule that assigns to each element of a set A a unique element of a I
set B (where B may or may not equal A).

The set A is calied the domain of the function f, the set B the codomain. and
the subset of the second set B consisting of those elements that are images under the
function f of some element of its domain is called the range of the function /. When
f associates ain A o b in B, the element b is called the image of a under for the value
of fat a,and a is called the preimage of b under f. Figure 2 depicts these sets and ele-
ments schematically.
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A (domain) B {codomain)

A number of different notations have evolved for functions in mathematics
and, more recently, in computer science. Two notations are particalarly common in
mathematics. When the function [ associates g with b, then we write

fia)y = b, called f(x) or () notation,
or fa—b, called the arrow or mapping notation.

The arrow notation conveys the idea of an action associating the elements from set A
to their corresponding valtues in set B. Some writers use f: A B only for mdicat-
ing the domain and codomain, and use fra—> b 1o identify corresponding elements.
We use — for both. When arrow notation is used, we often say that the function f
maps the element ¢ onto b and we call f a mapping or map from A into B. We say that
f maps the set A onto the codomain B if every element in B is in the range.

A value in the domain of a function is called an argument of the function. The
variable that stands for the argument is called the independent variable. The variable
that stands for the values of the function is called the dependent variable. In some
applications thesc are called the input variable and output variable, respectively,
reflecting the influence of computer science.

For the function f: x — v, many books in precollege mathematics consistently
use the single Jetter f to name the function and distinguish this from the symbol fix)
used to identify the values of the function. In mathematics more broadly, and i com-
puter science, this distinction is nol always made, and the symbol f(x} may stand for
a function and also its values, Using the symbol f(x) to stand for a function allows
the independent variable to be explicitly identified.

A function relationship may be expressed by a formulasuch as y = x?, which
squares each real number x, or y = sin(x}, which associates with each real number
¥ the real number ¥ that is the sine of an angle of x radians. A formula that rep-
resents a function equates the dependent variable with an algebraic expression
written in terms of the independent variable.

A function relationship may also be expressed as a verbal description of the
correspondence between two sets, such as the correspondence between the set N of
natural numbers and the set P of prime numbers that associates with the natural
number n the nith prime number p,. In this case, there is no formula for computing
the nth prime number p, for a given natural number r, but the precise meaning of the
relationship is nonetheless clear from the deseription or from the following corre-
spondence diagram.

N 12 3 4 5 0 . 0n
A
£ 2 3 5 7 11 . . p,

A function relationship may also be expressed by a table listing all of its values.
For example, the population given by the US. Bureau of the Census 1s a function
from the set of years divisible by 10, from 1790 to the present, to the set of natural
numbers. This function is partly described in Table 1.



Table 1 U.S. Population P(t) (in Millions) for the Period 1780-1870

Yeart 7R0° 1790 1800 1810 1820 1830 1840 1850 1860 18V
P 2.8 39 5.3 7.2 9.6 129 17.1 232 3t.d 398

s An official census was first taken in 1790, but the Census Bureay has estimated the population for 1780

and earlier.

To allow correspondences where {he idea of a function “rule” is not particu-
tarly appropriate. mathematicians use a formai definition of function in terms of the
language of sets. In this definition, explicitly stated below, we think of each pair of cor-
responding elements in the two sets as being the components @ and b of an ordered
pair (@, b) and we think of the function as the set of ordered pairs.

Recall that the Cartesian product of two sets 4 and B, denoted A » B, is the
set of all ordered pairs whose first compounents are from A and whose second
components are from B. For instance, if S = {1, 2} and T = {34 5}, then
§w T = {{13). {14} (1.5), (2.3, (2.4), (2,35)} . The word “Cartesian” in the
name of this operation comes from the fact that ordered pairs were tirst introduced
in coordinate graphs on the Cartesian plane. The word “product” and the symbol
“x are quite appropriate for this operation because if A has m clements and B has
11 elements, then A % B has mi elements.

For any seis A and B. a function f from AtoB, f:A—B isa subset f of th_el
Cartesian product A X B such that every a € A appears once and only once as the
first element of an ordered pair {a, b} in f.

. i _: D e'}ir_s_i"t_i__o_n:

For example, let A = the set of all circles in a plane M, and B = the set of all
points in M. Then A x Bisthesetofall ordered pairs (C, P), where C is acircle and
Pisapointin M. The subset of A X B,

£ [ = {(C.Py=A X B: Pisthe center of C},

i is a function f: A — B because each circle in A has exactly one center. Thatis,no C
is associated with twa o MOIC values of P.
On the other hand, the subset of B » A,

g = {{P.CyeB X AP is the center of C}.

is not a function g: B — A because any point P is the center of (infinitely) many dit-
ferent circles in the plane. 50 every point P appears with infinitely many different val-
ues of C. However,if we restrict g to the set

g = {(P.C)eB X A P is the center of € and C has radius 1},

then g B— Aisa function.

The ordered pair characterization of function is particularly appropriate for
real functions because we can picture the ordered pairs in a graph. For this reason,
some authors prefer to definc a function as a correspondence and define the graph
of a function to be the st of ordered pairs created by the correspondence.

The ordered pair definition of function has the advantage that it is precise and
upambiguous, but it presents & functional relationship in a rather passive, static way.
The description of a function by a rule of correspondence has the advantage that it
suggests that a function provides an active procedure for producing range elements
from elements of the domain of the funcrion. Together, these descriptions of a func-
tion present the concept in a very general yet very precise and useful mannet.
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Functions and equations

We have noted that some people distinguish f(x) from f, while others do not. Itis
also the case that some people identify a function with its equation, as in “the func-
tion f(x) = 2x + 5,” while others distinguish a function from a description of its for-
mula or rule. Here we provide a short discussion of notation used in writing functions
and equations to clarify the conceptual relationship between functions and equations.

Consider the problem of Jane’s average from Chapter 1. Jane has an average
of 87 out of 100 after four tests, and we wish to know what score is needed on the 5th
test for her average on all 5 tests to be y. (We use y here instead of A.) If Jane scores
x poinss on the 5th test, her average after 5 tests can be written as

4-87 + x
M e

(1) is called an expression in x. It is common to use the term “expression” for forms
such as (1) that have no equality or inequality signs. Expressions such as (1) are cen-
tral in that they can be used both in defining a funciion and in stating an equation,
as we now illustrate.

Jane’s average after 5 tests is a function of the point score on the fifth test. Let
us use the symbol f to refer to the function relating x and y. In talking about such a
function it is convenient to be able to refer to three different things, the input (inde-
pendent) variable, the output (dependent) variable, and the function itself. Here is
an explicit description of the function f in function notation:

_ A8 4 x
o

(2) flx)

This establishes ¥ as the input variable and [ as the name of the function, and links
them through the expression in x given in (1).

What we have writien in (2) is called a defining formula or a defining equation
for the function f. Perhaps formula is the more appropriate word, since equation is
used unjversally in a rather different role {see, for example, equation (7), below].
Morcover, an alternate way (3) of giving an explicit definition of the function f uses
mapping notarion and o equation,

This gives the name f to the mapping that sends x to the defining cxpression (1).
Mapping notation also makes clear that there is no notion of equality involved in a
function, but only the notion of a relationship between input and output.

Another way of giving an explicit definition of the function f is by relating the
expression in x given in (1} to the output variable y:

(4) v

This establishes v as the output variable and x as the input variable, and iinks them
through the defining expression given in (1). But notice that attempting to Jink all
three of x. v, and f at once in a single formula leads to

(3) y = flx).

This is the generic form of function notation and does not define a particular func-
tion. To link this to a specific defining expression such as (1} requires a double equal-
ity such as
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(6) y=fle) = i

Experienced users of mathematics get accustomed to idiosynerasies of notations [or
defining functions, but they can create confusion for beginners.

Recall from Chapter | that the original question asked what score x Jane needed
to average 90. This leads to an equation in the unknowrn x.

(7} v T =R Q0

There is a definite connection between the function defined in (6} and the equation
stated in (7). The equation amounts o a condition on the input x, namely that the
function (6} have the specific numerical cutput 90, Writing the condition as
F{x) = 90 would leave out the specific content of the equation. To include this con-
tent and also make specific the fact that this is a condition on inputs of the function
£, a double equality such as {8) could be used.
4R oy
(8) flx) = 1“‘73*—‘ - 90

The variable v ts commonly used when we discuss the graph of the function f.
We can regard (4) above as an alternative way of defining a function, one that makes
explicit the name of the output variable y rather than the name of the function, Alter-
patively, (4) could be regarded as an equation relating the variables x and v. Then
the equation (4) also describes the graph of the function as a geometrical object.

Functions of two variables

Equations with two variables {usually v and y) are often used to defe lines or curves
in the plane, especially when we are interested in them as geometric objects rather
than as graphs of functions. In their general form they are notrestricted toa y = ...
formulation. For instance, (9} is an equation that defines the eliipse of Figure 3.

© 2L

Study of equations such as (9), and in general of equations of the form F(x. y} = &
(where k is a fixed number), are the subject of the analytic geomelry of the plane.
They do not necessarily describe a function in the single variable x. because jas is
the case in (9)], for some values of x there may exist two values of y. In such cases,
the equation F(x, y) = & may identity more than onc function of a single variable.
For example, equation (9) can be viewed as identifying the union of the two func-
tions f, and f; defined by .

fite) =331 and (o) = <341 o

Equations of the form F{x, y) = k also serve to identily functions of two vari-
ables x and y. Specifically, equation (9) is related to the [unction F of two variables,

, , PER
(10) ¢= Flry) =7 by

or, in mapping notation, 1 (x, y) ~—>r; + ; . The graph of (10) is an elliptic paraboloid
above the xy-plane (Figure 4). Equation (9) amounts to a requirement on the output
of the function (10}, and the pairs (x, y) that meet this requirement are the solutions
of (10). To express (9) graphically we can add the plane z = 1 to the graph of (10).
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down to the xy-plane, 18 the etlipse of bgure 5

A sequence can be defined formally as a function whose domain is the set of integers
grealer than or equal 1o a fixed integer &, where & is usualiy 0 or 1. The image of an
integer x in a sequence § is usually denoted by 8, [rather than $(»)] and called the
nth term of the sequence. The sequence itseif is often denoted {8,} or 8. Although
a sequence is formally a set of ordered pairs, we often list only the terms in order of
n. For instance, the sequence {{1,2).(2.4),(3.8). {4, 16),... } with rule §, = 2% s
usually wrilten as 2,4,8, 16,27, ...

Since sequences are functions, they may be described in the same ways as func-
tions are, by formulas, tables, or correspondences (the correspondence carlier in this
section between N and the set of primes is a sequence). However, sequences possess
a fundamental property that distinguishes them from other types of functions—the
possibility of being defined recursively, For example, the geometric sequence

g = (g} =2618354. . .203). .

has mitial term g, = 2 and common ratio v = 3, so that g, ., = 3g, for all integers
n = 1. These conditions define the sequence recursively, that is, after some given
terms, later terms are found from earlier terms. The same sequence can also be
explicitly described by the formula

g, = 2(3%) for all integers n = 0.
The {famous Fibonacci sequence F = [ £} has as its first few terms

F={F}=112358132134 ..

and can be described recurstvely by
FF=1 £ =1 F,.=F,, +tF for any integern = 1.

The possibility of defining sequences recursively greatly enhances the utility of
sequences for modeling and analyzing problems. Recursive defimitions are rooted
in the most basic property of the natural number system N—mathematical induc-
tion. With mathematical induction, recursively defined sequences become a power-
ful tool for mathematical modeling and analysis. We examine mathematical induction
in some detail in Chapter 3.

A brief history of the concept of function

The function concept was not discovered or conceived by a single individual or at a
particufar time. Rather, it evolved over a period of several centuries and continues
to evolve today in response to important problems in a number of different fields
both within and outside of mathematics.

It is interesting that, although the concept and notation for functions were not
introduced until the 18th century, graphs of functions were used to analvze their prop-
erties as early as the 14th century. An early instance of this use of graphs was by
Nicole Oresme (1323-1382}, who used velocity-time graphs to study the motions of
bodies under uniform acceleration. Although he did not state the law of falling bod-
ies [distance = constant{time}”] later attributed to Galileo, his results essentially
yielded that conclusion,
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The historical evolution of the definition of function began with a much less
general and less precise description than either the rule of correspondence or the
ordered pair definition for a function given carlier in this section. Gottiried Leibniz
used the term “function” for the first time in 1694 to describe six very specific line seg-
ments associated with a variable point on a given plane curve. {See Project 1 for
details about these “Leibniz segments™. )

In 1718, Jean Bernoulli {1667-1748) significantly broadened the meaning of
function by stating “a quantity composed in any manner whatever of a variable and
any constants™ i a function of the vanable magnitude. He also began experiment-
ing with various notations for functions, with his symbol fx being the closest to the
modern f{x} notation.

The notation f(x) for a function of a variable quantity x was introduced in 1748
by Leonhard Euler in his text Algebra. which was the forerunner of today’s algebra
texts. Many other mathematical symbols in use today. including e for the base of the
natural logarithm and 7 for the ratio of the circumference of a circle to its diameter,
were introduced by Euler in his writings.

The evolution of the function concept during the eighteenth century took place
completely within the context of real functions and centered around a lively interac-
tion between Jean Bernoulli, his sons Daniel {1700-1782) and Nicolaus (1695-1 726),
Euler, and Jean Le Rond d’Alembert {1717-1783). This inferaction was prompted by
their common efforts to analyze and describe the motions of a vibrating, tightly
stretched string such as a guitar or violin string. As their work progressed, the con-
cept of a function evolved from a rule expressed by a single formula with a finite
aumber of terms, to formulas that would allow mfinite series and limits, and finally
to piccewise-defined functions that required more than one formuda to describe the
function. This extension of the meaning of function was used independently in the
work of 1. B. J. Fourier (1768-1830), whose treatise on heat conduction published in
1822 used infinite series composed of sine and cosine functions (later called fourier
series) Lo represent functions. He observed that his functions included the piecewise-
defined functions of earlier mathematicians.

{n 1837. Lejeune Dirichlet (pronounced Direesh'lay) (1805-1859) gave the fol-
lowing definition of function: “If a variable y 15 so related to a variable ¢ that when a
numerical value is assigned 1o ¥, there is a rule according to which a unique value of
yis determined, then y is said to be a function of the independent variable x. Per-
haps to emphasize the generality of his definition. Iirichlet introduced the following
“badly behaved” function f: R -+ R:

filxy =1 if «is a rational number;
fix) =10 if x is an irrational number.

This function, which is everywhere discontinuous, now is called the Dirichiet function.

Functions commonly studied in calculus may have rather complicated tormu-
las, but they are almost all continuous and also differentiable {except possibly at a
finite number of points in their domains). The Dirichlet function is an example of
what is sometimes called a pathological function. The term “pathological” is used in
mathematics for examples that illustrate unexpected or unusual behavior. The Dirich-
let function, which is discontinuous at every point. is pathological with respect to con-
tinuity. It is perhaps more surprising that there are functions #: R— R that are
continuous at every point but not differentiable at any point! Of the many such func-
tions, one of the most intuitively appealing is described in Project 3.

‘Cited in Carl B. Bover, A History of Mathemarics. Second edition, revised by Uta C. Merzbach. New
York: John Wiley, 1991, p. 422,
Baver, op. cit,p. 516




Untii the last half of the 20th century, the concept of function included
multivalued functions. those in which a domain value may be associated with more
than one range value. Examples of rules for multivalued functions x — y are
y = £Vx, y = afactor of x, and y = an angle whose sine is x. The term “multi-
vaiued function™ is still common in the study of complex variables, but in most other
parts of mathematics these formulas are said to define refations, not functions.

The extension of the use of the function concept to contexts in which the domain
or range is not necessarily a set of numbers occurred during the latter part of the
19th ceatury and the first half of the 20th century as a result of the developments in
set theory, abstract algebra, and analysis. The ordered pair definition of a function
fr A~ B was part of that final evolution to the modern concept. It provided the
added generality necessary to make the function concept a central organizational

tool and unifying thread for virtually all fields of mathematics.

3.1.1 Problems

1. Show that the formula

Vo= V(d} = {f(ﬁrz e p? cos*f(d - ’)

;
+(d = )N rd - d?)

describes the real function that refates the volume V o the depth
d of fuel in an underground cylindrical fuet tank of length € and
radius r whose axis is horizontal (Figure 5). [Hie Let
d=BE r=A0=0C, and V(d)= {{Area of region
AECBA}, using Figure 6. Notice that Area of region
AECBA = mr® - 2( Area of sector ODC)} + Area of triangle
OAC, and that cos( £ DOC) = 2]

Figure 5 Figure 6
/-
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E

2. The following statements each describe a relationship
between two sets A and B in which the given elements are in
the set A. Identify the sets A and B preciselv in each case.
Determine whether or not the relationship defines a function
fiA—B.

Ixample:  The point £ is the center of a given circle
C in the plane.

Answer: A is the set of circles in the plane. 5 is the
set of points in the plane. The relationship
defines a function (hecause each circle has
exactly one center).

a. The triangle T is circumscribed by the given circle C.

b, The circle € circumscribes the given triangle T

¢. The area of a given triangle Tis A.

d. The pair { 7, ¢} of points in the plane are the foci of a given

ellipse .

3. Give a formula for a function with the indicated domain

and range.

a. domain R, range R

b. domain Z, range the set of integers = 2

¢. domain R, range the set of reals = k, where k is a given

constant

d. domain R, range {v.a = v = b}

e. domain {xeR:x > 2}, range {yreR: y > 1}

4. a. Suppose A is the empty set. Using either the ruje or
ordered pair definition of function, are there any func-
tions from A to a set B? If so, characterize them.

b. Suppose B is the empty set. Using either the rule or

ordered pair definition of function, are there any functions
from set A to set B? If so, characterize them.

a. Let A and B be finite sets. Suppose A contains x ele-
ments and B contains y elements, with x = y. How
many different functions are there from A to B?

b. Does the answer to part a change if ¥ < y? Why or why
not?

6. Give a precise description of the Euclidean distance o in
the coordinate plane as & function of poinis (x;, v} and
{x. ¥) in R that is, identify the domain A and range B
and a rule for the distance function d: 4 — B,

7/ a. Give the ordered pairs of the correspondence that maps
the letters of the alphabet other than (2 and Z onto the
telephone digits 2 through 9.

b. Is this correspondence a function? Why or why not?
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o

8, Consider the greatest integer function (or floor funcrion) . Explain why {cos(m!mx})" = 1 for any integer v and any
defined by | x| = the largest integer = x. For example, positive integess m and n with m == 1.

{171 =1, | —w ] = —4. Plot this function with domain the
interval =3 < x -< 3, first by hand and then with a calculator,
Explain the difference between the hand plot and the caleu-

. g . .

b. For any rationat number x = _ with ¢ > 0, explain why
B i 4’ o
{cos(m!ax)}" = 1 for any positive integers m and n with

lator plot. m=2q.
! The Dirichlet function f: R — R, which is defined 1o have ¢. For any irrational number x, explain why —1<
e value 1 at all rational numbers and the value { at all irra- cos{mlmx) < 1. Then explain why this implies that
tional numbers, can be expressed as a double {fimit as follows: lim (cos(mlarx))* = 0 for any positive integer .
(*1 fi{x) = Hm{lim {cos{(mtmr))"). ’:n ) )
s R d. Finally, use the resulls of parts a—c together to explain the
Although this expression [ooks a bit mysterious at first glance, double limit (*)

you can unravel the mystery rather quickly as follows;

3.1.2 Problem analysis: from equations to functions

The purpose of this section is to exemplify once again how pursuing the idea of gen-
eralization can raise questions from the level of exercises to the level of mathemati-
cal analysis. An earlier example was the problem of matching an average. discussed
in Chapter 1. Problems of this sort can be generalized in a syslematic wav: Il the
numbers given in the problem statement are replaced by general parameters, the
result of the analysis gives the answer as a function of these parameters.

A “numbers-in / number-out” problem

We use the following school-level problem to iltustrate this idea.

Person A sets out in a car going at 50 mph. Starting 3 hours later, person B tries
to catch up. If person B goes at 75 mph, how long does it take to catch up?

Question 1: Before reading on, solve this problem.

A solution to this probiem as stated can be based on the {act that the distances trav-
cied by the two people are the same. Let/ be the time if takes person B tocatch up.
Equating expressions for the two distances leads to a linear equation.

(1 SG- (¢ +3) =751

Solving the equalion gives the answer: ¢ = 6 hours.

Treated in this way, this is a “numbers-in / number-out” problem. The numbers
50 mph, 3 hours, and 75 mph are the input, and a simple analysis using algebraic tech-
niques produces an output, 6 hours. A particular answer has been given to a partic-
ular question.

This type of problem can be useful in giving students practice in setting up and
solving equations. Yet if we take the problem one step further to give a general
answer to a general problem, much richer mathematics can be illustrated.

A “parameter-in / function-out” problem

As a start on the process of generalizing, suppose we replace person Bs speed of
75 mph with a parameter: the speed w.

Question 2: Before reading on, solve the problem in terms of the speed w of
person 5.
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Figure 7

~Quiestion 3:- Before-reading-onsolve equation-&-for £

(2) S0-{r + 3) = w-t

When we solve equation {2} for 1. we do not get a numerical solution. Instead, we

3

obtain r = T which shows the catch-up time 1 as a function of anv catch-up
speed w. The variable w has become the argument of the function
3) (= flw) = —=

s !

A graph of f can exhibit all solutions. The special case of the original situation
(75 mph catch-up speed) and its solution (6 hours) is represented by the single point
(73,6) (see Figure 7).

rfhours)

20

o

i (75.6)

6 R s e S i e B S e} w {mph)
0 10 20 30 40 30 i} T 80 90 100

Having a tfunction as a solution to the problem is much more useful and power-
ful than having a number as a sotution. Formula (3) tells us exactly how the catch-up
time depends on the catch-up speed. For example, we can find the slope atw = 75 mph
(by calculus or estimating from the graph). This stope, about —} hnfﬁ tells us that for
every ofie mile per hour person B’s catch-up speed increases from 75 mph, about§ hour
1s subtracted from the catch up time. We can see also what happens when w is very fast
{the time 1 approaches zero) and what happens when w is just a little over 50 mph (as
the catch-up speed w approaches 50 mph, the catch-up time ¢ goes to oo). Both of
these results make sense m the original problem situation.

An “intersection of functions” approach

Another approach to this problem is to model the speed of each car with a linear
function. The distance d (1) traveled by car B in time ¢ defines a function d g described
by the formula

{4) dgl(t) = 75¢.

Similarly. the distance 4 4(7) traveled by car A in time ¢ defines a function d , with

(5} dy(r) = 50(t + 3).
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Figure 8 shows a graph of each of these functions. Naotice that negative values of £
from —3 to 0 are meaningful, indicating how far car A had fraveled ¢ hours before car
B started.

Figure 8 o {miles)
300+
FETI —
40 +

(6. 450}

300 +
car A
200 +

car B

104)

i A a et SR A UL L))
-3 =2 U 2 4 6 8

With this representation, the intersection of the graphs indicates a time when
the cars have traveled the same distance. So it is a solution to the original problem.
The catch-up time ¢ at the intersection is found by setting dy(i) = d (1), which s
equation (1), and which we found to be 6 hours, When ¢ = 6, d = 450, indicating
that both cars have traveled 450 miles.

The graph in Figure 8 generalizes the original problem in a different way than
the graph of the function in Figure 7. The vertical distance between the two lines in
Figure 8 is the distance between cars A and 5 at any time £, even whent > 6 (assum-
ing the speeds of the cars remain constant).

We have here therefore two different uses of functions and their graphs. A
relationship between these two different graphs can be illustrated in a powerful way.
Using dynamic geometry software, the graph of Figure 7 can be produced from an ani-
mated version of the graph of Figure 8 in which the slope of the function for car B s
varied while the i-axis intercept is kept fixed.

Other ways of generalizing the problem

This is not the only way to generalize the problem. To get a fuller picture, note the
relevant variables in the problem, as shown in Table 2.

Table 2

speed of person 4 v 50 mph
speed of person B (catch-up speec) w 75 mph
speed increase (how much faster £ is than A} Ay 25 mph
head stars time (head start A has over B) h 3 hours
catch-up time {time for £ to catch up with A) t 6 hours

The function (3) we have derived above gives 1 as a function of w, while keep-
ing the other variables with their original numerical values (3 hours and 50 mph).
Some other ways to generalize are presented in the Problems.
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3.1.2 Problems

1. Consider a general “catch-up” situation such as the one

analyzed in this section.

a. Show that the time required for a person 1o catch up (s
directly proportional 1o the delay (the elapsed lime
between the time the first person starts and the time the
second person starts).

b. Show that the constant of proportionality in part a is
dependent only on the ratio of the two speeds.

2. The text claims that, roughly. for every one mile per hour

B increases his catch-up speed, the catch-up time 1s decreased

by about  hour. What is the basis of this claim? How close is

“roughly” if the speed is increased from 75 mph to 80 mph?

How close 1s “roughly™ if the speed is decreased from 75 miph

to 70 mph?

3. The [unction f graphed in Figure 7 expresses the catch-up

time £ as a fupction of person B's speed w.

a. Find a function that expresses the catch-up distance d as a
function of person £'s speed w. Graph this function,
assuming the values v = 30 mph for person A’s speed and
b = 3 hours for the delay of person B.

b. Express the catch-up distance d solely in terms of general
parameters: persen B's speed w, person A%s speed v, and
the time delay & of person B.

4. The text mentions a way the two graphs in the section

could be related using a dynamic geometry program. Carry

this out, producing the graph of Figure 7 from a dynamic ver-

sion of the graph of Figure 8.

5. A general “meeting” problem concerns two people start-

ing off at the same time and heading toward each other.

a. Express the amount of time it will take to meet as a func-
tien of the speeds of the people and the mitial distance
between them.

b. Express the location of the meeling place as a function of
the speeds of the people and the initial distance between
them.

6. Round trips with and against a wind. Here is a problem of

a type most students encounter m their study of elementary

algebra.

An airplane makes a round trip where the one-way dis-
tance is 1000 km. On the out-ieg the plane faces a head-
wind of 30 km/h, while on the return there is a tailwind
of 30 km/h. If the speed of the plane i still air is
400 km/h, what is the total time for the trip?

a. A qualifative argiment. Before you salve the probiem,
think about it in a “qualitative” way: Sketch a rough graph
of a function giving the total tie for the round trip in
terms of the wind speed as the wind speed varies from 0 to
400 kph. Compared with the total time for a round trip

i

1
with e wind, do you think the time for the round Lrip with
the wind 1s {1} less, {if) the same. or {5ii) more?

b. A numerical answer. Answer the question of the problem.
Does vour answer support your qualitative respanse in
part a?

¢ A general answer. The numerical answer does not reveal
much about the structure of the siteation. Solve the prob-
lem again, this time expressing the total time in terms of
general parameters for the total distance, the air speed of
the plane, and the wind speed. There are many different
equivalent symbolic expressions that will express the total
time. Try to “coax” the expression vou arrive at into a sim-
ple form.

d. The general answer refined. Express the total trip time
with no wind (call it 1) in terms of the given parameters.
Use 1 Lo get a more revealing expression for the total time
with wind. There is a connection of this problem to special
relativity through a “Lorenz transformation.” L.ook this up
and show what the connection is.

e. The motion functions, Functions bave not played a role so
far in the analysis we have outlined, Give an atternative
approach by modeling the situation with the motion func-
tions of the plane’s outbound and return trip. Graph these
functions.

L The dimensionless factor. A dimensionless factor P
where 7 s the ratio of the wind speed to the plane’s speed,
appears in the expression for the total time found in parts
eand d. Analyze this factor as a function of 7. and graph
this tunctios.

A mixture problem. Consider this question, alse of a com-
mon type of problem from elementary algebra.

How many ounces of a solution that is 99% alcohol

need to be mixed with 3 ounces of a solution that is

30% alcohol in order Lo obtain a solution that is 0%

alcohol?

a. Answer the question, letting y be the answer.

b. Generalize the question by replacing 80% by x%. Then

graph the {unciion that maps x onto y. Interpret the graph

in terms of the original question.

Find a formula for the function that maps y onto x and

graph that functjon. Interpret the graph in terms of the

original question.

d. Generalize the problem, replacing 90% by A and fetting v

be the answer. Find a formula for the function that maps

A onto y and graph that function. Interpret the graph in

terms of the original guestion.

Generzlize the problem in a different way, replacing 5 by

G and letting y be the answer, Find a formula for the func-

tion that maps G onto y and graph that function. Inter-

pret the graph in terms of the original question.

.E‘}

I
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3.1.3 Some types of functions

Functions are important in a wide variety of contexts in which the domains or ranges
are not sets of numbers. Functions ate also given a variety of other names that are
suggestive of the additional special properties that they have. In this section, we
explore some of these instances of functions to demonstrate the utility and broad
applicability of the conceptin mathematics.

One-to-one correspondences as one-to-one functions

In Chagpter 2, we uscd one-to-one correspondences 1o establish when sets have the
same cardinality. For instance, the existence of a one-to-one correspondence between
the set N of natural numbers and the set Q7 of positive rational numbers meant that
N and QF have the same cardinalitv. We indicated that a one-to-one correspondence
can be defined by a formula, a diagram. a rule, or a table. One-to-one correspon-
dences are one-to-one funciions.

A function f: A — B is a ene-to-one function or 1-1 function if and only if every |
element b in B is the image of at most one element ¢ in A. Symbolically, fisi-1if
and only if for all x, and x; in A, f{x} = flx;) implies x; = x3.

Definition

For instance, with domain R, v = f(x) = v} defines a 1-1 real function because
X =x' x;eR and ,eR imiplies x; = x,. On the other hand, with domain R,
v = cos x does not define a 1-1 function because cos 0 = cos{2w) vet 0 # 27

Often 1-1 correspondences can be presented geometrically. For example, Figure
9 pictures a one-to-one correspondence hetween the set R of real numbers and the

open interval (-7, %) in R.

Figure 9

It is described geometrically as follows: Constiuct a semicircte of radius 1 that
is tangent to the real number line at the point O with coordinate . Then the line
joining a point P on the real line (o the conter of C of this semicircle determines a
point £’ on this semicircle. Now / P'CO has radian measure between — 3 and 7,
measuring positive and negative from ray CO. Let the coordinate of P correspond
to the measure of ~ P'CO. For instance, the point with coordinate 1 corresponds to

i)

% This one-to-one correspondence f:R— (~5.5) provides an alternative geomei-
ric model of the real number system to the number line—a semicircle—if we identify
the point P’ = f(P) on the semicircle with the coordinate of P on the number line.
In this model, it is natural to interpret the two endpoints of the semicircle as repre-
sentations of 400 and ~ o0 . Of course, +0¢ and —o0 are not real numbers, but they
do represent limits of sets of real numbers. The model has the following property: For
any sequence { P} of real numbers, lim £, = Lifand onlyif im f(F,) = f{L).(See
Problem 1.) e e
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. The ore _m.__.'3-_a_'l_ _:' Iff A~> Bis a one-to-one function thh range f{A) then _

inverses of functions

The importance of 1-1 functions lies in the fact that their action can be reversed: that
is. given any element yin the range f{A) of a 1-1 function f: A — B, there is exactly
one element v in A such that f{x) = y. The rule that assigns each y in f(A) to the
unigue x in A for which v = f{x) defines a function with domain f(A4) and range A
called the inverse of f.

DL NIETI® (i — ((x,y): v = f(x)} and f is one-to-one, then the function { (v, x}: (x, y) e f} 1
T— — iscalled the inverse of f and denoted £~

More precisely. we have the following:

P A W) f(4) K A & y)ef}

IS 4 one-to-one function with domam f (A) and range Aq_

Proof: Toshow that /™" is a function from f{ A) into 4, we need only show that for
each yin f{A) there is only one x in A such that {y, ¥} isin f'. But
(roxjef e (x, v)ef
and for each y in f(A) there is exactly one x in A such that (x, y) € f because f is
a one-to-one function, By similar reasoning, we see that /7" is a one-to-one func-
tion because f i5 a function.

I f(x)) = flxy) = vand x; # x,, then if g were the inverse of £, we would
have g(¥} = x,.and g{y) = x,, and g would not be a function. So a function that
is not onc-to-one does not have an inverse. i |

Composition of functions

Simple functions are often combined to produce other functions. Function compo-
sition gives the result when a second function operates on the images of a first func-
tion. Here is a formal definition in the language of ordered pairs,

& D e fl n lt aon B 11/ A — Band g: B — C are functions, then the composite ﬁmctlon {go f) a—-cl
' T isthesubsetg ° fof A X Cdefined as foliows

gef={{ag(fla)y))eA XCaeA}.

Read “g o f" as “the composite of f followed by g”. We distinguish the operation
“composition” from the result “composite” of performing the operation. Some
authors use the word “composition™ for both.

For example, if f: v — x* (the squaring function) and g: x —>x — § {(the “sub-
tracting 57 function), then g(f{x}} = g(x*) = x* — 3,505 ° frx=> x> - 5.

Inverse functions and composition of functions

The term “inverse function” comes from the fact that the composite of a function
and its mverse is an identity function under the operation of function composition.
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The function f1x ¥ with domain R does not have an mverse, but if we Testrict
its domain to [0, o¢ ), then the restricted function does have an inverse. In general,
iffrA— Bisafupctionand if Cisa subset of A, then the set

fo= {{a.bypaeC}
is a function from the set Cinto B called the restriction of £ to C. The restriction
fe: €~ B has the equation
fo(x) = f(x) forall xin C.
For any set C. the symbol /¢ denotes the identity function on C; that is.
1. = {{x,x)xeCl.

Equivalently, [ 1s the function from € to C that satisfies I-{x) = xforallxeC. |
maps any element of C onto itselt,

With this language, we can connect function composition, inverse functions, and
identity functions.

Theorem 3.2

:Suppose f A > Biis a given 'fu_nqtim_i_.-' Thenthe [

< function g [(A)— A such |

g e f = [A &nd f og e ‘

Cif andonhuf f is a one-to-one function_a_nd g =7

Proof:

(==) Suppose [is1-1 andg = f ' Thenforallae A, if f(a) = b, then g(b) = a.50
g(fia)) = g(b) = a. Thus g ° f =1, Similarly, f(g(b)) = fla) = bforany
clement bof f(ALsof @8 = fpa-

(=) Thisis left to you as Problem 3. 1

By substituting f7 for g in Theorem 3.2, we see that a 1-1 function f with
domain A satisfies the following properties of composition:

fref=1dy and foe F= L

Thus, just as with the operations of addition and multiplication of real or complex
numbers, composing a function with its inverse in cither order results in an identily
for that operation.

Operations as functions

From the addition of whole numbers that you learned while very young through the
operations of differentiation and integration in calculus, you have encouniered a host
of operations. Most of the common operations you have encountered are unary or
binary operations, and both unary and binary operations are functions.

Binary operations are speciat types of functions of two variables. A binary oper-
ation takes as input an ordered pair of clements apd from them yields a single element
as output. 1f both components of the ordered pair and the output are from the same
set §. we say the binary operation is o the set S. In function language, a binary oper-
ation on a set S is any function § X §— 5. {Recall that § % § is the set of ordered
pairs of elements 5.) For instance, the operation A of addition can be described in
function language as A: (m.n}—m + 1. Addition, subtraction, and multiplication
are binary operations on the set of integers. Division is ot a binary operation on the
set of integers, because there are integers whose quotient is not an integer, but division
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Bi[léi‘} ()pudtl():‘;-.\ nu,d not hL ot numbers. I*oz LXdD’lE’)lt, union and intersec-
tion are binary operations on the set of all subsets of a set, Composition of real func-
tions is aiso a binary operalion.

Unary operations are special tvpes of functions of one variable. A unary
operation lakes as input a single element and from it yields another single element.
t both the domain and codomain are the same set A, then the unary operation is
said 1o be on the set A. That is, a unary operation on a set A is any function u: A — A
that maps the elements of the sLL inlo clements of that set, For instance, the reciprocal
operation r defined by r(x) = n a unary operation on the set of nonzero rational
numbers. On the other hand, r ;s not a unary operation on the set of nonzero inte-
gers because there are nonzero integers whose reciprocals are not nonzero Infegers.

As with binary operations. unary operations need not be on numbers. For exam-
ple. given asubset A of a set §, the complement of A in S, sometimes denoted by A,
is the set of elements of S not in A. The function ¢: A — A, “taking the complement,”
is a unary operation on the subsets of a set.

Every function f: R - R is a unarv operation on the set of real numbers. For
instance, the function f with rule f(x) = x + 5 might be described as the unary oper-
ation “adding 5." More generally, for any set S, any function f1 5§~ 5 is a unary
operation on S.

Operations are often discussed not as special types of functions, but rather with
a special terminology of their own. For instance, the idea of closure is common with
operations. but not with functions. Let £ be a unary or binary operation on a set A.
If Bis a subset of A. then B is said to be closed with respect to the operation f il and
oniy if the restriction of f to B is an operation on 5.

For example, for the binary operation of addition on the set Z of integers, the
subsct £ of even integers is closed with respect to addition, but the subset (0 of odd
integers is not. That is. the restriction of the binary operation of additien
AL X L Lo E X E s a binary operation on £, while its restriction to 2 X &
is a binary operation but it is not a binary operation on . Similar conclusions hold
for the binary operation of multiplication on the set R of real numbers on the subset
Q ol rational numbers (closed) and the subsel Q of irrational numbers (not closed).

Inverse operations are not necessarily inverse functions

Sometimes operations use the same terminofogy as functions, but with different mean-
ngs. Specifically, certain pairs of unary or binary operations are called inverses of
one another even through they are not pairs consisting of a function and its inverse
function. Examples of such pairs are the operations of addition and subtraction for
aumbers; and the operations of multiplication and division for numbers. In each of
these examples, the term “inverse™ is used differently for operations than for {unctions.

For example, the binary operation of addition on the set Z of integers, the set
Q of ratienal numbers, and the set R of real numbers does not have an inverse as a
function because it is not one-to-one. For instance,

7 =4+ 3= 8+ (—1)=Tis the image of (4, 3} and (8, —1) under addition.

However, there is a natural way in which addition does have an inverse in the con-
text of functions: For a given set § (such as Z, Q. or R but not N) on which addition
1s a binary operation. and a given & inn S, define

AgS—8 and Sp85—=8
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by Ax) = x + kand §,(x) = x ~ kforallxin S We might call 4, the “adding &7
function and S, the “subtracting k" function. Then A, and S, are a pair of inverse
functions for cach k in S because if A{x} = v + &k = y, then S{y) = y —k = »,
You are asked to describe a similar interpretation of multiplication and division in
Problem 6.

{1 calculus, the operations of differeatiation and integration are often described
as inverse operations as a means of summarizing the statement called the Fundamental
Theorem of Caleniis. We state that theorem here without proof.

'Eugdafﬁeﬁtaifﬁeaféﬁié Caleuls ¥ ff é_feail-fuﬂciii.on'thaii_s-cdntinubﬁs onl
“an interval [a; b] and if Fis the reat function defined for each x in {a, b] by :

*f(r)dr) = f(x) forall xin [a, b

then F/(%) is ditferentiable

It tooks as if integration and differentiation are inverse operations on functions,
since integration followed by differentiation yields the original function. That is,
'fz.i{(j;,if(r) dry = f{x) for any continuous function on [a, b1 Butsince \[;ff’([) di =
f(x) -~ f(a}, the value of the composite function in the other order differs by a con-
stant from the “original” function f. In fact, since f\-,f{x) = i {(f{x} + ¢) for any con-

stant ¢, the unary operation of differentiation does not have an imverse. Thus, to
describe integration and differentiation as inverse operations is technically not valid.

Transformations

Some functions that suggest a change of a set, often geometric in nature, are calied
transformations. The most common transformations in school mathematics are
geometric transformations. A geometrie transformation is a functior whose domain
and range are sets of points. Most often the domain and range of a geometric trans-
formation are both R* or both R*, Often geometric transformations are required to
be 1-1 functions, so that they have inverses. Examples of geometric transformations
are reflections, rolations, size changes, scale changes, and shears. The name “frans-
formation” for these funciions comes from the fact that figures in the domain are
viewed as having been transformed by the function into their corresponding image
figures in the range, and the requirement that they be 1-1 ensures that there is a
unique transformation “back” from the image to the originai figure.

A rule for a geometric transformation of the plane requires that for each point
there be a way to find its image. This rule may be given in geometric language. For
example, part of the definition of the reflection r in the plane over line s is that the
image of point £ is the point P’ such that #1 is the perpendicular bisector of P17,
Function notation is commonly used, so if r is the reflection over m, we may write
po P> P oand r(P) = P’ A rule may also be given in terms of coordinates of points.
For instance, the transformation 7 under which the point {x + 2y, y) is the image of
(x,v) can be described as T: (x, y) = (x + 2y, y), or T(x,v) = (x + 2y y}. This
transformation happens to be a shear.

Transformations may be composed. For example, we can compose

r... = reflection over the linex = ¥

xEy

refiection over the x-axis

and r

X
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ngk” toobtainr, ., © r., the rotation of %0° counterclockwise about (0,0).0orr, = r,__ . the
verse rotation of 90° clockwise about (0, 0). Composition of transformations is basic to the
= X study of congruence and simifarity (see Chapters 7 and 33
on m Transtormations may deseribe functions in areas of mathematics outside geom-
etry, but almost always from a situation in which there is underlying geometry. For
ribed instance, linear transformations are particular functions that map vectors onto vec-
enial tors, or matrices onto matrices.
Morphisms
.On'l Recall from Chapter 1 that {R".«) and (R, +) are sets with operations on their ele-

ments satisfying certain general rules. The set R* of positive real numbers is a group
{it satisfies the group properties) under the binary operation of multiplication, while
the set R of real numbers is a group for the binary operation of addition. The func-
tion log,: R* — R is a one-to-one correspondence between R* and R under which
results of the operations correspond. That is, if log,(x) = m and log,(v) = n, then
}« the log of the product in R* corresponds to the sum of the logs in
' R:log,(xy) = m + n Such one-to-one correspondences between algebraic systems
are called isomorphisms, and the two systems are said to be isemorphic algebraic sys-

OI?S" tems. ‘The term isomorphism (from the Greek “iso”, meaiting “same.” and “morph”,
tis, meaning “form or structure™) indicates that the two systems (R', <) and (R, +) are
It = algebraically identical. See Problem 15 for another example of isomorphism.
on- The term homomorphism is used for functions from one algebraic system onto
On- another under which results of operations correspond, but thal are not necessarily
to one-to-one functions. For example, if m is an integer greater thax: 1, the function
lid fi: N —> N, maps any natural number » onto its congruence class # mgduio i (see
' Section 6.1.2). Both the set N of all natural numbers and the set N, of congruence
classes modulo m are groups under addition. The function # is operation preserving:
hla +b) = (a+ by =a +b = hla) + h(b) forallaand bin N.
ted
are
3in 3.1.3 Problems
ns- 1'
to . . . . .- .
s 1 C.onmd(?r the correspondence f: R~ (~ 1, 7) described c. the set P of prime {positive) integers
15- in this section. d. the set C of composite positive integers
re a. Find the values of f{—1) and £{10}. 5.. Describe each of‘the foliowing as a unary or binary oper-
ge b. Generalize part a to derive a formula for f(x). ation on an appropriate Se} }9? m;mb’e-rs. -
) i a. the greatest common divisor ged(x, y) of x and v
va c. Use part b ora ge?mct‘r}‘c‘argmnsﬂi.baiseé on)Flgure 9 to b. the maximum max{x, y} of x and y
explain why nh—{%}o £y = Lifand onlyif nl'l'l:?&) F(£) = F(L). @ Provide an interpretation of the statement in the context
nt 2. a. Prove that any two open intervals {g, b} and {c.d)in of functions:
;)5 . Fintjlz ts(j:";r?u{lj: fr:fz ??22;:::;:{:@:::‘2; Sii::iltl:;tes The binary op.eraafom' m:.iz'ri;f)licmimz artdd division of real
v : : ; * rmumbers are inverse operations.
. part a.
te 3. Prove the (<= ) direction of Theorem 3.2, that if /- A — B @ Bxg)laiu in the context of functions the meaning of the fol-
5. is a given function and there is a function g: f(A) — Asuch  lowing statement:
>f thatge f=J,and f e g = I 4y, then fis a one-to-one The rect'proctt{ operation aﬂ;l; and the squaring
is function and g = /. operation a > a“ commute on the set of nonzero rational
4,/ Decide if the following subsets of the set Z of integers are numbers, but the "mk'mg the f)PPO-:"f"@"'O{JE’f ariona — ~a
bsed for the unary operation of squaring. Support vour does not commutte with the squaring operation.
cenclusion. @ Let P be a binary operation on the set of positive real num-
a. the set £ of even miegers crs such that P{x, v) = 2x + 2y

b. the set (7 of odd integers a. Is P commutative?




b. Is P asscciative?
c. (ive a geometric application of P and interpret the result
of part a in terms of that application.
9. Repeat Problem 8 for the binary operation A on the set of
positive real numbers such that A{x, ¥) = xv.
10. Let S be a finite set with # elements.
a. How many binary operations are there on § X 87
How many of these are commutanive?
. The number of permutations of 1 objects taken 7 at a time,
written £ or P{n, r). can be considered as a function of

N
[

two variables 1 and r described by the rule Pla,r) =

-yt

where n = r. F also can be considered as a binary operation.

a. Is P commutative?
b, Is P closed on N?

Answer the questions of Problem 11 for the number of
combinations of n objects taken 7 at a time, written nCr,
Cln,ry, or (7}, described by the yule C{n,r) =
where n = r.

13. Consider the binary operation of powering {or expo-

nentiation) defined by pr {(x, vy}~ 2%

a. [Is pabinary operation on R™ X R7, where R7 is the set of
positive real numbers?

b. Explain why pis not a binary operation on R X R.

c. What value(s). if any, does your calculator give for p{ &, i)
and p(: -8, :;)?

d. Explain what vour answer to part ¢ means in the confext
of binary operations.

14. Let X be a setwith 5 distinct elements a, b. ¢, d, e, and ket

Y be the set of 5 distinet prime numbers 2,3,5, 7,11, The set

P{X} of all subsets of the set X is an algebraic system for the

binary operations of union U and intersection i1 of sets. The

sel D{2310) of ali positive divisors of 2310 is an algebraic sys-
tem for the binary operations of least common multiple (lom)

and greatest common divisor (ged). (2310 is the product of 2,

3,5, 7, and 11)

a. Explain why the sets P(X) and D(2310) both have
27 = 32 clements.

b. Show that the algebraic systems (P{X},U, 0} and
({2310}, lem, ged) are isomorphic by defining a one-to-
ene correspondence f between £(X) and D(2310} such
that

FlAUEB) = lem{f(A), f(B)) and
FLATIB) = ged(f{A), f(B})
for all subsets A and B of X

15. Leti be the complex number such that ¢ = “/—1, and

let 5; be the set {1,4, — 1, ~i}.

a. Prove that the operation - of multiplication of complex num-
bers is a binary operation on 5; and that (S, -} is a group.

b, Prove that the function A: Z — 8, defined by k{n) = " for
cach integer #, is a homomorphism of (N, +) onto (8, ).

IUnit 3.2 Properties of Real Functions

We use the term real function to refer to a function whose domain and range are sub-
sets of the set R of real numbers. The function f that opens this chapter and all the
functions of the problem analysis of Section 3.1.2 are real functions. A function may
involve only real numbers but still not be a real function. For instance, a binary oper-
ation on real numbers cannot be a real function becausc itisof the form R X R — R;
thatis, ihe elements of its domain are not single real numbers, but ordered pairs. The
maost imporiant special feature of real functions as far as their analysis is concerned
is that they can be graphed in the Cartesian coordinate plane.

A small number of categories of real functions dominate the study of precatcubus
and calculus.

i. lincar, quadratic, and, more generally, the polynomial functions, that is, functions
that can be expressed as

y = [)n(’r) = anxn + {:[”___ix”71 R ax + 218 for anxiﬁ R9
with real coefficients;
. rational functions, that is, the functions fthat can be expressed as

_p(x;

for all x in R such thatg(x) = 0,

J{x)

Cg(x)’

where p{x) and g{x) are polynomials with real coefficients;




