Algebra and Analysis with Connections
to Geometry

REAL NUMBERS
AND COMPLEX
NUMBERS

People have often co-opted words from outside mathematics to describe numbers.
Consequently, students of mathematics are usually familiar with nonmathematical
meanings of the words natural, whole, real, complex, imaginary, and rational before
they encountet the same words as technical mathematics language. (The word integer
is a notable exception of not having a common meaning outside mathematics.) Some-
times (he mathematical terms are best understood in contrasting pairs. Thus rational
is contrasted to irrational, positive to negative, and real 10 imaginary. Int each case, the
first of the pair has a meaning outside mathematics that conveys easier accessibility
or greater utility, while the second of the pair evolved from a human tendency to
view new things as strange, bad, or unreal.

The excess baggage of knowing nonmathematical meanings can affect how stu-
dents view these numbers. Probably nowhere is this more pronounced than with the
two terms real and imaginary. To mathematicians, an imaginary mumber 15 as real as
a real number, and neither is imaginary in the nonmathematical sense of the word. But
students are often influenced by these names to think that real numbers are the actual
ones we work with, and to think that imaginary numbers are not numbers at all, but
inventions of mathematicians to provide theoretical solutions to equations that have
no utility outside mathematics.

What qualifies a mathematical object to be identified as some type of number?
A simple answer is not as casy to obtain as it may first seem. Exactly what basic
properties objects called “numbers” should possess can be a subject of debate. Some
people would argue that telephone numbers are not numbers (in the mathematical
sense) because the operations of addition and multiplication are not meaningful with
them. Others would say that these are numbers whose use just happens not to employ
arithmetic operations. We address that debate by introducing the idea of a number
system. A mumber system is a set of objects together with operations (addition and
muitiplication and perhaps others) and relations (equality and perhaps order) that sat-
isfy some predetermined properties (such as commutativity or the existence of an
identity for an operation). With this distinction, we conclude that a telephone num-
ber such as 1-800-555-1212 is a number. but it is not a patural number because it does
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18 Chapter 2t Real Numbers and Gomplex Numbers

not possess the properties of natural numbers (for example, divisibility o the ability
to be added). The Dewey Decimal library classification numbers for books also might
be considered as numbers, but they are not rational numbers or real numbers because
arithmeltic operations are not meaningful with them.

In this chapter, we examine the numbers that make up rational, real, and com-
plex number systems. Qur approach is to start from their most familiar geometric rep-
resentations, the real number line and the complex plane.

| Unit 2.1 The Real Numbers

Figure 1

The natural numbers arose historically from the need to count. The extension of the
system N of natural aumbers Lo the system Z of integers was probably prompted by
the need fo maintain trade accounts. As early as 300 .., the Chinese and Indians used

rod numerals (Figure 1).
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They used right (o left positional notation for arger numbers (for example, 6221
was represented by L [1=1}. They carried out commercial and governmental calcu-
lations by using rods of two different colors to distinguish between positive and nega-
tive numbers. Interestingly enough, red rods were used for positive numbers, and black
rods for negative numbers, the opposite of later uses in Western countries! At [irst, zero
was represented by an empty space in the numeral and later by a more conventional
0. These historical particulars aside, the mathematical importance of the extension
from the aatural numbers to the integers is that it extends the subtractiona — b, which
is defined in N only for the case in whicha > b, to arbitrary integers ¢ and b. As acon-
sequence, the equation x + b = ais solvable in Z for all choices of @ and b in L

The positive rational numbers were devised to help measure and compar¢ the
sizes of objects. The concept of “commensurability” of lengths was fundamental
ta the early development of geometry by the Greeks. The meaning of commensu-
rability can be explained as follows: Stppose that A and B are two line segments,
Then A and B are commensurable if there exist positive integers g and b such that

ib%ﬁ%; = ¢. The ancients used such ratios of positive integers (i.e., what evolived
into today’s positive rationai numbers) ot only to COmMpAare objects of different
lengths but also different weights, areas, and so on.

The measurement of lengths, areas, and volumes of geometric objects became
the primary objective of geometric analysis i antiquity. In the sixth century B.C.,
Pythagoras of Samos and his followers formalized and taught a philosophy of math-
ematics based on measurement and number ratios that had a deep influence on the
evolution of mathematics in Greece {or over one hundred years.

The Pythagoreans originally believed that the lengths of all segments in geomet-
ric objects are commensurable, and therefore the positive rational numbers are adequate
for all measurement purposes. However. the Pythagoreans themselves discovered later




Figure 2

Unit 2.1 1The Real Numbers 19

that the length s of a side and the length d of a diagonal of a square were not com-
mensurable; that is, they showed that there donot exist natural numbers m and 7 such
that? = % or, equivalently, ms = nd (see Figure 2).
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Question 1: Explain why, in this gituation, ¢ = 7 is equivalent to V=2
p y ¥ n q H

As a result of this unexpected discovery, a major problem developed for the
Greek geometers who were rigorously proving theorems. The validity of all theo-
rems involving ratio and proportion was suddenly called into question. This discov-
ery also raised the question of how the lengths of incommensurable segments could
be compared. Eudoxus of Cnidus developed a new theory of proportions {360 8.C.),
and this theory was incorporated in Euclid’s Elements {c. 300 B.c.). The contributions
of Eudoxus notwithstanding, the subsequent evolution of mathematics in Greece
reflected a certain suspicion of measurement and number.

Because d° = 2s° for an isosceles right triangle by the Pythagorean Theorem, the
statement that there do not exist natural numbers 71 and 7 such that ¢ =  is equiva-
Jent to the statement that there do not exist natural numbers 1 and nsuchthat V2 = 7.
In today’s language, we say that \/7 is not a rational number, that is, that /2 is an irra-
tional number.

The incommensurability of the lengths of the sides and the diagonai of a
square showed that, although the rational numbers arose from the need to mea-
sure objects, they are not adequate for that purpose. This inadequacy led very
slowly to the use of the broader system of real numbers as the number system for
measurement. Although irrational numbers were used in calculations and the solu-
tion of algebraic equations, the evolution of the real numbers as an algebraic sys-
tem did not occur until the nipeteenth century. At that time, the evolution of the
theory of real functions from its roots in calculus finally necessitated a careful study
of the foundations of analysis. This study was independently initiated by Bernhard
Bolzano (1781-1848), a priest from Czechoslovakia, and the French mathematician
Augustin-Louis Cauchy {pronounced Coshee) (1789--1857). The German mathe-
matician Karl Weierstrass (1815-1897) sought to base analysis solidly on a number
foundation without appealing to its connections with geometry. But it was the work
of Richard Dedekind (1831-1916) and Georg Cantor {1845-1918) of Germany and
Charles Méray (1835-1911) of France that finally established precise definitions
for the real number systermn based on the system Q of rational numbers,

The comparatively slow development of the real numbers as a number system was
due in part to the lack of a representation for irrational numbers that was conducive
to calculation. The use of decimal representation by Simoen Stevin (1348-1620) was a

15:evin did not invent decimal representation. In fact.a form of decimal representation was used by the
ancient Chinese, and mathematical researchers of Stevin's (ime used it. However, the publication of
Stavin's very populas book on decimal representation in 1585 resuited in widespread use of decimal rep-
resentation among engineers, scientists, and other users of mathemarics. The decimal point, to separate the
integer and {ractional parts of a reat number. is first found in the 1619 posthumous pubiication of John
Napier. Mirifici Logarithmorum Canonis Constrieciio, in which he describes how he constructed his tables
of togarithms. {In Burope, a comma is still commonly used for this separation.}
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great stride forward in this regard. However, another factor that contributed to the
slow development of the theory of the real pumber system was that precise algchraic
definitions of real number were not given until the years 1869-1 ©79. Méray (1869) and
Cantor (1879) consiructed real pumbers using $equences of rational numbers. Weier-
strass (1872) defiped real numbers in terms of infinite decimals, [n the same yearn
Dedekind published & {reatise in which the real numbers Were defined on the basis of
partitions of the set Q of rational numbers, partitions that are now known as Dedekind
cute. In that treatise, he also developed the algebraic structare of the real number sys-
tem on the basis of these cuts.

Today there are 1Wo basic approaches that can be taken to the theory of real
gumbers. One is gop-down. to assume that there exists a aumber system that has the
properties of a complete ordered ficld. We take this approach 1n Chapter 6. The
other approach is bottom-up, Lo construct the real numbers [rom the rational num-
bers as done by the mathematicians identified above. We do not carry out all the
details of such a construction in this hook. But we convey some aspects of the hot-
tom-up approach in this chapter because it helps to Hluminate the relationships among
(1) the real numbers; (2) decimals, their most common representation; and {3) the
geomelry of the pumber line. {n Chapter 6 we show how viewing the real numbers
a5 an ordered field relate to (1), (2), and (3).

Rational numbers and irrational numbers

Rational numbers

When we think of rational numbers, we may think of ratios. the origin of their name.

A number is rational if a‘nd'_o'niy 1f2 it can be written as the indicated quotient of

“{worintegers: -

Numbers written as indicated quotients of tWo integers, such as Yor 2 are ratio-
nal from the definition. As an immediate consequence of the definition, any 101eger k
is a rational number, hecause it can be written as ﬁ the quotient of two integers.

The indicated quotient of a divided by b may be denoted by a slash (a/b). a
bar (3).ora division sign (g = by Insome countries, a colon {a:h)s used. Either
of a/borfisa fraction. The bar in ¢ aiso serves as a vinculum, a parcntheticai
grouping symbol, just as is found in the radical sign \/ . For this reason,
16 + 8/2 + 6, which has no grouping symbol, equals 16 + 4 + 6or 26, whie 14(*—?
equals 3. TO make the slash act like the fraction bar, parentheses need to be used:
(16 + 8)/(2 + 6y =3

Although every fraction whose numerator and denominator are integers 18
rational. d rationdl number is pot the same ds d fraction. The definition of “rational
number” does not require that a rational aumber nuist be written as a quotient of
integers, only that it can be written that way. Consider the number one-hall. It can
he written as the fraction }2 or in infinitely many other forms, inciuding notations as
diverse as 0.5, 13, sin 307, 10g V106,27, 64710 and 5. Of these. only & and 55 are frac-
tions, and only £ is an ‘adicated quotient of integers. So rational numbers are not
determined by how they look, but by how they can look.

I
2Some mathematicians use s pather than Ui and only if” when it is clear thata word is being defined

For further digcussion, se¢ Section 7.1.3.
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The various ways of representing I give sufficient evidence of the variety of
forms in which rational numbers may be written and lead 1o a natural question: How
do we know that —35.4322986, V12 tan 7, and In ¢”* are rational? (They all are.) There
is no general procedure, only a requirement. We need to show that each is equal to
a quotient of two mtegers,

Question 2: Write

fod il

—5.4322986, V12 ran 5, and In ¢”® as quotients of two integers

to show that each is a rational number.,

There are infinitely many ways to denote any particular positive rational num-
ber even if we insisi on writing it as a quotient of two positive integers. For instance,
1= ® =4 = ... Butonly one of these fractions has the property that its
numerator and depominator have no common integer factor greater than 1. This
is the fraction that we pick when we say the rational number is in lowest terms.
Two positive miagcrs are relatively prime if they have no common integer factor
greater than . Thus a fraction in lowest terms has a numeramr and d{,nommator
that are relatively prime. A pegative rational number such as -5 “or £ is in lowest
terms if the absoiute values of the numerator and denominator are relatively prime.
Thus either 5 or 75 Is In fowest terms. Some people prefer positive denominators

and would coszs;der " alone to be in lowest terms.

Operations on rational numbers

Why do we care whether a number is rational? One reason is that the algorithms we
have for operations with fractions make rational numbers easy 1o add, subtract, mul-
tiply, and divide. For instance. it is almost always ca&au to multiply by sin 30° than to
multiply by sin 40°. because the first of these cquals 3. And, as the following theo-
remn shows, the sum, difference, product, and quotient of two rational numbers is itself
a rational number (provided we do not divide by zero). [In the statement of part (b),
Q — {0} means the set of rational numbers with 0 removed. In general.if Bis a sub-
set of A, then A—B is the set of elements in 4 that are notin 5.}

a‘ ‘The set Q of ratlonai numbcrs 1s closed unde:r addmon subtracti"'n andl
muitlphcaimn : I ROy Sl -
b The SEE Q = {O} of nonzam rdmonal numbers is closed under-dmsmn-_ :

Proof:

a. We need show only that the sum, difference, and product of two arbitrary
rationals is rational.

Let p and ¢ be the two rational numbers. Since they are rational, there

exist integers a, b, c,and d with p = Jand g = §,and b # Oand d # 0. Then

potg=ta s 9d = e

§ = M Since the sum and product of two integers is an
integer, both ad + be and bd are integers, and bd # 0 because neither b nor
dis 0. Thus p + g is the quotient of two integers and is rational.

The proofs of the rest of part (a) and part (b) are left to you. N |

Estimating rational numbers

In 1978, the following multiple-choice problem was given to a random sample of 13-
vear-olds participating in the National Assessment of Educational Progress {NAEP).
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. 12 7
Problem: Estimate —— + 7.
i3 8
Choices: A
B 2
C 19
D 21
B [ don't know

Only 24% selected the correct choice (B). We might conciude that 13-year-olds of that
era did not know how to add fractions. but on the Second International Study of
Mathematics Achievement in 1981, 84 %, of 8th graders correctly added two fractions
with different denominators in a situation that was not multiple choice. Most
researchers have concluded from these examples that the NAEP students tried to
answer the above guestion by adding the fractions blindly without having any idea
of the size of the numbers, But then, when they abtained a sum. they didn’t know how
to connect it with the choices!

Estimating a pesitive rational number # to the nearest integer is easy il it is writ-
ten as a mixed number. A mixed pumber is the sum of an integer and a fraction
between 0 and 1, fypically written with no space between them. For instance, the
mixed number 327 = 32 + i In this case 3215 called the integer part of the rational
number, and 1 is its fractional part.

We can obtain an estimate of the size of a rational number by writing it as a mixed
number. For instance, when a car is driven 453 miles between gasoline fill-ups, and
it takes 16.8 gallons to fili the tank, the fuel efficiency in miles per gallon s 1%2 a ratio-
nal number that means little until we determine its integer part. Recall that | ¢ | denotes
the greatest integer fess than or equal to f. When we write a positive rational number
t as a mixed fraction. the integer partis [ .

To determine | ¢ | for a given positive number £, we divide. In the above case,
we would divide 16.8 into 433. One way 1o do this is to multiply both divisor and div-
idend by 10 to obtain integers, and divide 168 into 4530. To obtain the integer part
of the quotient, we may repeatedly subtract 168 from 4530, or we might use long
division, or today most people would use a calculator. Regardless of the process, we
find that {33 | = 26. This indicates that £ = 26 + g, where r is the remainder

i ]

that needs to be determined. Multiplying hoth sides by 168, 4530 = 168+26 + r,

: hich r = 16 A _ g lal gl
from which r = 162. So g = 2637 = 20%.

The Lheorem about integers that guarantees a unique guotient and unique
remainder in this process is called the Division Algorithm. We deduce the Division
Algorithm from properties of natural numbers and discuss it in detail in Section 521
but state it here since we use it repeatedly in this chapter.

Division Algorithm): If 2 and are integers and if b > 0, then theré exist 'uﬁi_qqe-l
integers g.and rsuch thatd = by + rand 0 =r.< b B

Dividing both sides by b, we obtain the form of the Division Algorithm that we
used above.

orolla ry (Altern ate Form of DWISI ' n . Aigorlthm} Af aandb Aar
b = 0, then there exist unique integers g and £ such that y
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1n some computer languages. o and r are denoted as a divb and a modb. Notice
in the corollary that since r <0 b, we have P landsog = Ly lila >0 In this
way. the Division Algorithm explains why every rational number ¢ is either an inte-
ger or between two consecutive integers. shows how those integers can be calculated,

and also determines how 1o write 1 as a mixed number,

For instance, if a = —i6d and b = 3. then we are Jooking for g and r with
\ 5 - i S 4 ~ - ’ -

—164 = Sg + rand 0 = = 5. ¢ 7 | o) o= 325 = —33, from which 7 = L.
i B - : - —i6d i : -
Thus “1# is between —33 and —32, and =7 = —3237 So we say the integer part of

- 32% is ~33. and the fractional partis L. (Some people say the integer part of -~ 3211
is —32, and the fractional partis -2

In the pext section, we show how this process also enables us 1o write rational
numbers as decimals. But now we turn to irrational numbers.

trrational numbers

Anp irrational number is a real number that is not a rational number.

Today.irrational numbers are found throughout the study of middle school and
high school mathematics. They include the common togarithms of all positive inte-
gers except the inleger powers of 10 and the natural logarithms of all positive integers
arcater than 1: the sines, cosines, and tangents of all integer degrees except for some
divisible by 15° the square roots and cube roots of most of the positive integers: and.
of course, 7 and all its rational muitiples. They are lengths of scgments in geomelry,
coelficients in formulas for area and volume of common figures, and values of some
of the most imporiant functions m mathematics. Pick the coefficients a. b, and ¢ of
the quadratic equation ax? + by + ¢ = Dat random and you ar¢ more likely to have
solutions that are not rational than to have rational sotutions. Indeed, as we show in
Section 2.1.3, there arc far more irrational numbers than rational numbers.

The existence of irrational numbers
1n this book, we give many proofs of the existence of irrational numbers. We show:

Square roots of positive integers are either positive integers or irrational.
(Theorem 2.2)

Numbers represented by infinite nonrepeating decimals are irrational.
(Section 2.1.2)

¢ is irrational. (Section 2.1.3)

The number of irrational numbers is infinite and not countable. (Section 2.1.4)
Roots of many polynomial equations are irrational. (Section 2.1.4)

We also discuss the irrationality of other specific numbers, such as 7.

Our first proof shows that the square root of any positive integer that isnota
perfect square is an irrational number. Htrelies on two facts: (1) Except for the order
of the factors, every integer has a unique factorization into primes. This statement,
known as the Fundamental Theorem of Arithmetic, is proved in Section 5.2.4. (2 H
integers ¢ and b are relatively prime (i.c.. have no common integer factors >>1), then
4% and b? are relatively prime. Fact (2) follows quite quickly from (1).

" Let 5 b¢ a positive integer. Then /7 is either an integer or it is irrational. . l

Proof: Obviously the proof has to lake into account the meaning of “square root”
and of “jrrational”. The proof is indirect. Suppose # is a positive integer, Vn is
not an integer, and Vs rational. Then there exist relatively prime integers a and
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b with Vi = §. Squaring both sides (using the definition of “square root”)n = i,
from which 76 = «’. Now if we factor a and b nto primes, there are no common
factors. So the factorizations of a” and b have no common factors. Consequently,
the factorizations of the equal numbers nb® and a° are different. Since two differ-
ent factarizations of a® are impossible by the fundamental Theorem of Arithmetic,
the supposition must be false. S if V7 is nol an integer, it must be irrational. _j

As a resuit of Theorem 2.2, numbers such as /83 and V21 are irrational.

Theorem 2.2 can be considered 1o be a theorem about solutions to equations.
It is equivalent to asserting that if p is not a perfect square, the polynomial equation
v¢ — p = 0 has no rational <olutions. This. in turn. is a special case of the Rational
Roor Theorem found in many textbooks.”

Onge a number has been shown to be irrational, it can be used to produce many
other irrational numbers.

Lets be‘_apyfﬁoﬁzaf;_o. ;&tioﬁgl‘ﬁumbér}and:v be any ifrationai_ﬂumb_es. Then's +vl
g = v,.sv, and } are irrational. . SR e .

Proof: The proof is indirect. Suppose § and v are as given and s + o is rational.
Then (s + v) — sis rational from Theorem 2.1(a). But (s + v) — s = »,whichis
irrational. This contradiction shows that s + ¥ must be irrational. The other parts

of the theorem can be proved in a similar fashion. 1
_ . p ~14
Theorems 2.2 and 2.3 together show that such numbers as2 + V3 and ST
2+ 1V

are irrational.

Operations on irrational numbers

On oceasion, irrational numbers are nicely related. For instance, the product of two
square roots of positive integers is another square root of a positive integer, as can
be seen from the identity Va- Vb = “/ab. But this does not work for sums ol square
raots. Even as simple a sum as 3 4 /3 does not equal the square root of an inte-
ger. Relationships among irrationals are always tied 1o their origins. For instance. an
identity such as fog(xy} = logx + log vy may involve irrational numbers, but its truth
is traceable back to properties of logarithms, not o properties of irrational numbers.
Indeed, sums, differences. products, and guotients of irrational numbers may
be rational or irrational. So the set1of irrational numbers is not closed under any of
the operations of arithmetic.
*The Rational Root Theorem: [£ p{x) = a,x" + 1" 4 og,x v ag is a polysomial with integer
coelficients, and § is a rational solution to p{x) = Qinlowest terms, then a i a factor of 4y, and b s a factor

of a,.

1. Write each number as the quotient of two integers. If the
rumber can be written as a mixed number, identify its inleger

2. Give examples to show that the following statements are
not true for all positive rational numbers x and y.

part and fractional part in lowest terms. a x4 ,5,!6 | = 1x]
a. 3.14159 b, PEEE b lx!+ iy|=lx+y!
c. logy V100 d. - ¢ ixi-lyl=I1x— vyl

Rty




“ypressions may look mrational et stilf be rational.
4 e F

a, Write V3 + V7 — V8 -2V

integers.

Make up another example of the same type as part a.

as the quotient of two

=)

Generalize parts a and b.

. a. Prove Theorem 2.1(a) for subtraction,

. Prove Theorem 2.1(b).

- .

./a. s the set of rational numbers closcd under the opera-
tion of exponentiation? That is, for all rational num-
bers a and b, is a” rational? Why or why not?

C
4
b. Prove Theorem 2.1{a) for multiplication.
c
5

r’l
i
L

b, Is the set of irrational numbers closed under the aperation
of exponentiation?
6. Can you use the process in the proof of Thearem 2210
prove that the square root of 25 is irational? 1f so. show how.
/Ef\noi‘ indicate where the proof breaks down.
/7. Modily the proof of Theorem 2.2 to show that the positive
{ L 3 p ! P
nth root of any prime is irrational.
P ) ) .
/8./ Prove or disprove the claim of a student that the sides of any
“fight triangle can be written in the form Vg, Vb, and Va + b

9. Let s be a nonzero rational number and » be irrational.

a. Prove that s — v is irrational.

Urit 2.1 1 The Real Numbers 25
b. Prove that sv s irrational.
¢. Prove that | is irrational,

{19,) a. Giive an cxample of two different irational numbers
a whose sum is a rational number.
b. Give an example of two different irrational numbers v,

L -
and v, siich that ;7 is rational.

14. a. Provethatif a, b, and ¢ are integers and Vb — dacis

not an integer, then b £

b, Give a specific example of a quadratic cquation whose solu-
__ tions are proved irrational by applying the result of part a.

dne

% is irrational.

-
I

T -

LE, Although V2 + 3 does not equal the square oot of

an integer, V27 + V48 does.

a. Whatintleger's square Tool equals V27 + V48, and why?

b, Make up another example like VT + AVES.

¢. Find every set of different positive integers p, ¢, and r all
less than 100 such that p and g are not perfect squares and
Vp 4+ Vg = Ve

13. a. Consider Vi, where nisap integerand | = n = 10.

How many of these ten numbers are irrationat?

b. An integer » is randomly chosen from 1 to k2, where k is
aninteger. What is the probubility that »is a perfect square?
What is the probability that V1 is irrational?

ANSWERS TO QUESTIONS

- 2 2 od a Ter
1. Suppose m and n are natural numbers. Since d? = 2529 = 2. Since d and s are {positive) lengths, \

s
i / ol Ao & 22 6 9
T '\1’2. Soif (5 = %’f,thcn \‘2 Ea ﬂ', 2. ar. T

= /2 from which

HER-S

2 4.2 The number line and decimal representation of real numbers

In school algebra, real numbers are commonly described as numbers that can be rep-
resented by finite or infinite decimals, In geometry. they are introduced as numbers
that are i one-to-one correspondence with the points on a line. In higher mathe-
matics, real numbers may be defined in terms of rational numbers by least upper
bounds. cums of infinite series. nested intervals, or Dedekind cuts. In this section, we
connect these more advanced ideas to decimats and the number line. Our approach
is to begin with the number line, describe rational numbers as serics of the form

#

> ab with b = 10, and then use the Nested Interval Property of the number line

o
to obtain real numbers as decimals.

The number line

Although we often think of the arithmetic/algebra aspect of mathematics as being
separate from the geometric aspect of mathematics, there is a fundamental interplay
between the two. Arithmetic and algebra provide models for geometry, and vice
versa. Geometry can be modeled algebraically through coordinates or vectors or
complex numbers, and these algebraic models can lead to new geometric insights. In
turn, geometric representations of real and complex numbers play important roles in
our understanding of these numbers.
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The number line or real line is a geometric model or representation of the sys-
tem R of real numbers. In this model, we begin with a straight line and select two
points on that line that represent the integers 0 and 1, as in Figure 3.

Figure 3

Then we represent the successive positive integers 2, 3.4, .. by equally spaced
points to the rightof 1. and the successive negative integers by equally spaced points
to the left of the point 0.

A positive rational number x that is not an integer can be represented by
thinking of it as a mixed pumber. Suppose x = §, where a and b are integers; then
=1 =g+ 5 whereg = [xjandl <7 < p. On the number line. x is represented

3

by tl:e point that divides the segment from g tog + 1inthe ratio *. For example, the
rational number £ = 2 + . So ¥ is represented by the point between 2 and 3 on the
number line that divides the segment from 2 to 3in the ratio 3. A negative rational num-
ber x is represented by the point on the other side of U at the same distance from {has

the poini representing x| (Figure 4}.

<Pw+ﬂ++a—~m—<—a~mwaﬂ—w~_4—_w—w_wH»+H—ka—*

4 o . 2 s 2
;. i 0 1 2 23 3

Figure 4
-3 2% 2

This number line model also allows us to represent irrational numbers by points
on the number line. For example, we know that V2 is the length of either diagonal
of a square with side length equal to 1. Consequently. the point on the real line cor-
responding to \/7 can be constructed as the intersection of the real line and the aic
centered at (0, 0) and containing (1, 1), as indicated in Figure 3.

Figure 5
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In this way, if an irrational number can be identified with a length, we can find
the point on the number line corresponding to iL.

This geometric description of the system R of real numbers is quite adequate
for many purposes and is the basis of much of our intuition about real numbers. Most
of us find this model to be natural and intuitive because of our experience with con-
crele scales and measuring devices such as thermometers and rulers. In this section
and the next, we use this modei of the real number system x € R to describe its fea-
tures. In Section 2.1.4, we outline how the system of real numbers can be defined
without reference to the number line model and indicate why it was necessary to

develop such definitions.
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Intervals

An interval of numbers is a set containing all numbers between two given numbers
together with one, both, or neither of the given numbers. Therefore, an interval can
be modeled on the number line by a segment or Tay with or without its endpoints. An
interval is cdlosed if it coptains its endpoints and open if it does not contain them. The
jength of an interval with endpoints a and b and with @ < bis b — a. Interval nota-
tior: and terminology arc summarized in Table 1. (Read “e” as "is an element of”,

100 as “positive infinity”. and —oc as “minus infinity”.)

Table 1 Intervals

T T T
Name of interval| notation inegquahty description] sumiber line representation
M_O—‘_"—‘—”O‘"—W_“>
: AT a b

infinite, open (@, +%) i

{—=_b)

Intervals can be used to describe the sotution sets of equations and inequalities, the
domains of fanctions, and bounds for estimates. For example, the solution set S of the

=

inequality 2 - 6 = xis thesetof all real numbers x with x = 3o0rx = -7, hecause
Yoy e - x-6=0 (x - 3Nx+2)=0 = y=30r x =~

(Read “e>" as “il and onlyit.”) S can be described in intervat and in set notation.

§ == (—oo, ~21U[3, +oo) = {xeRix = -2 o0rx= 3}

As another example. the domain [ of the tangent function can be described as

or as the union of all open {ntervals between successive odd multiples of 3: that is,

- 1T ke 1]
D = kgz(lﬁuk 112k + 1] 2).
As still another example, if the diameter of a rod must be within .05 mm of a desired
vatue of 1.45 cm, then the diameter must lie on the closed interval [1.445 cm,
1.455 cm}.

Apart from applications such as these, intervals are also used to define decimal
represeniation and to describe some of the most basic properties of the real number

sysiem.
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What is a decimal?

We can classify decimals into two categories: finite (terminating) decimals such as

25 and 0.4 and infinite (nonterminating) decimals such as 4.23 or the decimal rep-

resentation of m = 3.141592.... We first define finite decimals. To formulate a

proper definition. think about how vou have used decimals in the past. A I‘&Sil nim-
3 2 5

s . . . n 3 L6 L
ber such as 37 is writlen 1n decimal notation as 3.625 because 3R=3+F gttt
The number 3.625 is a finite decimal representing 3;. Hereisa general definition.

If a nonnegative real number x can be expressed as a (finite) sum of the forml

k=Dt Ee e =D d 10T o107 dy - 107, where
D and each d, are nonnegative 'i:ntegefs and0=d, = 9forn = 1,2,...,k, then

D.dd, ... d, s the finite decimal representing x.

befin_i{:ion*

We say that D is the integer part, dd, ... d, is the decimal part, and d,is the ith
decimal place of the decimal® The integer part is the greatest integer less than of
equal 1o x.

If x is a negative real number and there is a finite decimal D.dd, ... d; Tep-
resenting —x, then we write ~(D.dd,...d,) ot,more simply, —D.dd; ... dy for the
finite decimal representing x. In this case, the integer partis —D — 1. For example, if

¥ =~ then x = —(1 + ) = ~(1.375) = —(1 + &+ s+ ) Thus 1375
‘s the finite decimal representing x, with integer part —2, because D = 1 and 50
- -1=-2 :

Question 1: Give the values of D and the & for 98 2.

Question 2:

a. Explain why every finite decimal represents a rational number.

b. Show by example that there are cational numbers that do not have finite dec-
imal representations.

.

An infinite decimal is an infinite sequence d=1[Dd.dy,ds, ..., d,.... ot
integers such that § = d; = 9 for all k in N. An infinite decimal d is usually written
in the form

(i - D.{:iidzd}...dn....

Every finite decimal D.d,d; . .. d, can be regarded as an infinite decimal by identify-
ing it with the infinite sequence d=1Dd,dr. .. d,,0,0,0,...,0,... 1. (See Prob-
tem 2 at the end of this section.) '

How does a decimal determine a real number?

Think of the decimal for the aumber ., the circumference of a circle with unit diam-
eter. If only the first two decimal places are known, that is, 7 = 3.14 ..., then we
know that 7 is in the closed interval {3.14, 3.15], an interval of length 1072, Each suc-
ceeding decimal place places in an interval of length f@ the preceding interval. To
five decimal places, 7 = 3.14159 ..., which places  in the interval [3.14159, 3.14160},

an interval of length 107, This interval is a subset of the preceding intervals and is
<aid to be nested in each preceding interval.

“Historically, x was calied a decimal fraction. Most books today avoid this vocabulary because the words
“decimal” and “fraction” refer to rcprcsentalions of the number, not the number itseif.
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] hé_s_tga’_d_ in another interval J if and only if / is a sub_sei of F tham& |
squence {1, } of intervals is called a nested sequence if and only if

The determination of a single real number follows from the Nested Inierval
Property of the real numbers, which we assume.

éqﬁéﬁé’d@f’ﬁﬁitg cldsed_alést':e;;} nf

The Nested Interval Property is an assumed geomelric property of the number
line model of the real number system. From it. many important properties of the
real numbers and real functions can be derived. These include the wentification of
the real number determined by a given decimal and rational approximations of real
numbers. For instance, consider the nested sequence of closed intervals:

(3.1,32],[3.14,3.15], [3.141, 3.142], [3.1415,3.1416), ..., [ py. pp + 107),..,

where p, is the rational number whose finite decimal representation consists of the
first k& places of the decimal # = 3.141592 ... The Nested Interval Property asserts
that there is at least one point that belangs te all of these intervals. Moreover, because
the length of the kth interval in this sequence is 107%, at most one point can beiong
to all of these intervals. (If there were two points, the distance between them would
be larger than 107* for some k. so they could not both be in all the [ py. py + 107])
That unigue point is the real number 7.

More generally, if {/,} is any nested sequence of closed ntervals with rational
endpoints whose length decreases to 0. there is one and only one point that belongs
to all of the intervals in the sequence. That point is the real nomber determined by
the sequence {1} }. There are many different nested sequence of closed intervals with
rational endpoints that determine the same real number. For example. the nested
sequences {/,} and {J,} defined by
{ 1

Ik - Epk - E()k, Py + ;[)_kJ and ‘]k = Pr: Pt + E

L

also determine the real number 4. The important thing about nested sequences of
closed intervals with rational endpoints with lengths decreasing to 0 is that each such
sequence corresponds to exactly one real number, and that number is represented on
the number line by the one and only point common to all of the intervals.

Notice that every rational number x is a real number determined by such a
sequence, for we need only take /, = [x, x + 107" to obtain a sequence {/;} of
nested closed intervals with rational endpoints that all contain x and only x.

Now consider the decimal D.d,d,d,. .. d, ... (finite or infinite). For each nat-
ural number k, define x, to be the rational number represented by the finite decimal
D.d,dods. .. d, andlet I, = [x;, x, + 1077 be the closed interval with left endpoint
x; and length 1075, The closed intervals [, are nested. Because the length of 7, is
107%, and 107 decreases to 0 as k increases, there is one and only one point x on the
number line that belongs to all of the intervals I;. This unique x is the real mumber
determined by the decimal D.d,d,d; ... d, ..., and we say that D.d dyds...d,.. . isa
decimal representation of x.
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{EXAMPLE 1

Solution

Find the first five terms of a nested sequence {1} of intervals for the finite decimal
3.625,
Since we are given the decimal 3.625, the first five intervals of {/,} can be found
merely by examining 3.625. They are

[3.6,3.71,13.62,3.63], [3.625, 3.626].[3.6250. 3.6251], [3.62300, 3.62501 .

The left endpoint of all of these intervals from L onward is 3 ¢, which is the real num-
ber represented by a finite decimal 3.625. l

FEXAMPLE 2

Solution

Find the first five terms of the nested sequence {1} of intervals for the decimal for
V2.

Wa know that 1 < V2 < 2. The first decimal place is the number 4, from 0 t0 9
such that

di o d} + 1

= N2 = L A e,

10 10

Since d, can only be one of ten values. we can just try them all, and test by squaring
the numbers, We find

1+

4 ! 5
4 —=V2=1+
: 10 10

In decimal notation,
14 = V2 =15
We proceed in the same way to find the second decimal place d,, which satisfies
4 s . 4 iy 1

14—+ ——==V2sl+ -+~ -
L% T 100 0100

Again there are only ten possible values and we find d, = 1 because
2

o 1 4
{14 -+ — = V2= 4+ 4

10 100 10 1007
That is,
141 = V2 = 142

Thus, for the decimal d representing \/2, the first two intervals of {[,} are
[1.4,15] and [1.41, 1.42]. Witha calculator, we can find the next three intervals.
They are [ L414, 1.415], [1.4142, 1.4143], and [1.41421, 141422}, i

Question 3: Explain why the real number /2 is not an endpoint (left or right) of any
of the intervals in the sequance [/} whose first 5 terms are listed in Example 2.

The method of Example 2 enables us to find a decimal for any real number x that
can be compared to rational numbers. Suppose X = 0,and let D = | x}. In Prob-
lem 7. you are asked to use the preceding constructions of 4, and d, as the basis to prove
that for each natural number & there is an integer d, such that 0 = 4, = 9and

d .
ey E sy e D A

D+ &4 ds
10 10F 10 e 10f

Then D.d,dds . . . d, gives an approximation to the real number x to k decimal places.

‘,&ﬁéﬁm‘w&w}ﬁw&ﬁ&%é&‘ﬁ%ﬁ%ﬁsﬁ'Siv:é&"&i\%ﬁ%mxwmmsﬁ;f%}x'i*.im@@@%&wﬁéé&z}%&z&wﬁm S
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If the given real numbu x is negative, then apply the preceding construction to the
positive real number y = —x to construct a decimal D.dydqds .. dy . .. corresponding
to y. Then —D.d,d,d;. .. d, ... s defined to be the decimal representing x.

Can one real number have two different decimal representations?

The answer to this question is ves. Two different decimal representations exist for ail
rational numbers with finite decimals.

For example, the construction of a decimal representation for the number | one
digit at a time, as in the preceding description, results in the decimal representation

1.0000. .00, ... However, 9999 . 9, . is also a decimal representation of 1 because
0+ - 2 + J <1 =0+ ) + L forallkeN
.« .. — el - — PR _L coeesre —— () o = .
o 0 TR

(See Problem 6.) Similarly, 3.4999 ... (with 9s repeating forever) = 3.5000 {with Os
repeating forever). In general, the reason two decimals exist for these numbers is

that we have defined d = {D,d,.d,, ds.....d,.... ] to be a decimal representation
of a real number x provided that d and x satisfy the following inequalities:
d, i), d, dy 1
D4t S sx=pD+ kL = orallkeN.
10 10° T T T

Conseguently, if x is a decimal fraction represented by the finite decimal
d = Dudyd,...d,, then
pa
1 107
But then the infinite decimal d = D.d d .. {d,, — 11999 ...9 .. also represents x
because

-] o, dy — 1 9 G 1
yr=D+ —+4 ot T o ——— + o+ e b — forallk = o

i < b -
HJ"’ 10 g et 0% 10%

An alternate approach to decimal representation that results in a unique deci-
mal representation for each real number is explored in Project 1 for this chapter.

It is possible to define operations of addition and multiplication for reaf num-
bers through their representation by sequences of nested closed intervals with ratio-
nal endpoints. If {/;} and {J,} are the sequences of intervals that determine the real
numbers x and v, we form a new sequence of nested intervals whose endpoints are
the sums of the corresponding intervals for x and for y. This new sequence will con-
tain a single real number we call the sum. For instance, here are the first five mem-
bers of the sequences for V2, V3, and V2 + V3.

2 3 V2 o+ V3

I = [1.4,1.5] 7= [1.7.18] (3.1, 3.3

I = [1.41,1.42) J o= 173,174 (3.14,

L = [1.414,1415] Jy = [1.732, 1.733] [3.146, 31451

i, = [1.4142, 1.4143] 7, = [1.7320,1.7321] [3.1462, 3.1464]
1o = [1.41421,1.41422] S o= 11.73205, 1.73206] [3. 146”’6 3.146281

Although the intervals of the sum are not the same length as the intervals for V2
and V3, they are still nested andl, since their lengths go to 0, there is only one num-
ber within ail of them. In similar fashion, we can define multiplication of two real
numbers. With these definitions, we can derive all the familiar properties of addi-
tion and muldplication of real numbers.
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Repeating decimals

The decimal representing any rational number can be obtained by repeated applica-
tion of the Division Algorithm. We iilustrate this process by finding the decimal tor
ﬂ”; The first application gives us 33, the integer part of this decimal. Each succeed-
ing application uses 10 times the remainder from the previous step. We show the

first four lines, which vield a quotient of 35.5384 and a remainder of T

462 = 1335 + 7

O R E LRI H(“S + ﬁ) o
ST IR ST T/ w0
5 3 s 3 :
50= 13-3 + 1] S a2 g s e ) s
10 107 10 0w
1 ;e 38 6
00 = 13846 = = BB el s ) +—
10 1010 0 100 107 10

: 6 4 ) L9 3 3 3 8
60 = 13-4 +8 = o5 =130+ g = 462 = 13(33 + -+ l + o=+ ) + I
Recause there are only 12 possible nonzero remainders, the cycle of quotients that
begins 3384 ... must repeat after at most 12 steps.

Question 4: Carry out the next {iwo applications of the Division Algorithm to show
- - g 2
that the cycle of quotients for %2 repeats after 6 steps.

Long division is a collapsed version of the aforementioned process. Here is the
long division to find the decimal for 4%2 (See Section 5.2.1 for another example relat-
ing long division and the Division Algoritbm.) Compar¢ each line with the steps of the
calculations preceding Question 4, We show the part obtaining the integer 35 as one siep
even though most people would take two steps to get it. The final remainder 7 is equal
to a remainder six steps earliet, so the cycle of quotients, 538467 will be repeated if the
long division is continued. Therefore, if; ~ 35.538461538461 ... 538461 ... We write
this as 35.338461.

35.538461
13)462.000000
4

3

]|t pralbin
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More generally, if the decimal representation of a rational number § does not
terminate, then the decimal is periedic {(or repeating): that is. there is a {inite string
dgdgsy. - dyypqotp digits in the decimal representation of that repeats forever from
Some pomt on. This is due to the fact that all of the remainders that occur in the
Division Algorithm division procedure for constructing the decimal representation
of { must be positive integers less than &. Because there are only b — | such integers,
the long division process must eventuaily cvele

The shortest repeating string is called a repetend, and the length p of a repetend
is called the period of the decimal. We have demonstrated the following theorem.

Sometimes the period of § equals b - I__ as for ! = 142857, Sometimes the

period of § does not equal b — 1 as for 57 = .27, In the next section, we explore
the period of a periodic decimal I’LPILSLI]IIHg a rational number,

2.1.2 Problems

i
1. Find decimals representing the rational numbers 2 & and 2. Therefore,
2. Suppose that x is a rational number represented by the 4.5 -
finite decimal Dhdd, ... d;. 1= '(') 5= A4444 + 555555 = 99999

a. Explain why an (inflinite) decimal representing x 1%

A ¥ . The 2 . O Y . _
Dedyds ... d,0000 ... Argument 41 The decimal 999999 stands for the gee

metric series

b. What other infinite decimal represents x?
3. a. Give the first six digits in the decimal representation of 9 + S P 9,
- 1 7o
b, Describe the first six intervals /, in the construction of the Bui when [r] < 1, the sum of the infinite geo-
decimal for —r. metricseries L+ 5+ 7~ b T s
4. Find the first threc decimal places of V/7 using only |
multiplication. e
5. Find the decimal for each rational number by repeated !
applications of the Division Algonthm. Therefore
. ki i b
o7 ’ . "o GYOY _ 0 ! L2
6. Ihc following arguments are frequently used to convince 5999 .- = I + 1(} e 1o R
students that 9999 .. = 1: '
9 I 1
Argument I Let n = 99999 .. Then 10nr = 9.99999. . i()(i (_E_{)) + (10> S
andso9n = 100 — n = 9.0060 . .. therefore, TN ’
95 = Yandson = 1. %(JY :
Argament 21 We know that 5 'i' = 333333... .50l = '5{E) e V1o,
3(.33333333, = 99999999 ]
i)
Argoment 3: By long (il\-‘;sum, you can see that - ;) ( 1 b=1
4 5 10
~ e 44444 0 and o= 553555 P i
9 9 (iive a justification for each step in these arguments.
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: L. . P
7. Suppose that p and g are posiive mlegers and thata = 7.
Explain why long division of p by g resulis in the decimal
representation of a. (Hinn Tt is epough fo explain why the

decimat d = [D.d,. da, dse ..

division satisfies

d| dy

N Y .

i REH
forail k in N}

ANSWERS TO QUESTIONS

1. D=98.d, =0,d;,= 1L d4

(ij;:g.

2, a leta= Ddd,...

Then a = l_’ej— which is a quotient of integers, 50 4 is 20 L7

rational.

3. /7 is not a rational number, unlike all the endpoints, which

are rational numbers.

213

0.16

0.742857

= 01253
=01

Lo

0

L op9

11

: )

S G083

12 E

_1;, = 0076923

13

Lo gorTiss

o T

e = (101

13

1 <

= 000625

16

w3, =y = 3, =T

d,. Then 10 - ais an integer. call it .

*8. Prove thal if x is a positive real number, then for each nat-
aral number k there is an integer d; such that 0 = d = 9 and
such that

dp. ..t produced by ltong 4, d, d, d, |
D e e & 7}\ = x < {) R L - -
10 10 16 Lo 10*
4 d, d, 1
T U e Tt ( Hint: Use the construction of 4, and ¢, in this section as a

guide for a proof by mathematical induction.)

3 . & )
e _ o = AR =

2
4. 80 =136 +2 = PoTl S R -
163 P 0

5 3 8 4 6 2
13 33 e - 4 — B o 4 e
( W 1w 10-‘) 10
MW=13-1+7 = =130+
10° e 100

{5 3 8 4 6 1 7
130 35 + = 4 4 e+ T F o
TR LS 1 LA (0 A U

Periods of periodic decimals

The variety of types of decimals for rational pumbers is illustrated in Table 2, which
shows the decimal representations of the reciprocals of the integers 2 through 6.

Notice that six of these representations are finite decimals, while the remaining
nine are periodic: Five have period 1, one has period 2, and three have period 6.

Also. for five of the nine periodic cases, the period starts right after the decimal
point. In three of the other four, there is a delay of 1 digit before the period starts.
[n one periodic case, there is a delay of 2 digits.

What kind of pattern is there in the types of representations? More precisely,
given an integer i, what can you predict about the decimal representation of 5 if m
and n are relatively prime positive integers?

The three types of decimals

Theorem 2.4 in the preceding section teils us that, if we divide 1 by an integer r, then
after at most 4 — 1 steps the division process must either terminate or else start 1o
repeat. This is true because there are only n — 1 possible nonzero remainders. 1f
the process starts Lo repeat at some step, it can either start repeating from the begin-
ning of the division process, or else from some intermediate point. This gives rise to
three distinet types of decimal representations. Tabie 3 classifies the decimals from
Table 2 mnto these types.

Tabile 3

Type of Decimal Examples General Form

£.5,6.25,0.2,0.125,0.1,0.0625
0.3 0.137857, 0.1, 0.09, 0.076923
0.16. 0.083 0.0714285,0.06

terminating O.cydods ... d, (d, # 0}

0dydyds . d,

O.dydady ... did,dadis Aoy

simple-periodic

delayed-periodic

& An asterisk by a problem number indicates a problem perceived to be more difficult than other problems.

T Y
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Question 1: Find the decimal representation of 37 using the Division Algorithm or
Jong division. Into which of the three categories does it fall? Explain the length
of the repetend and the number of digits of the delay before the period starts in
terms of the pattern of the remamders.

The examples in Tables 2 and 3 are all decimal representations of reciprocals of
positive infegers ! However, it is easy to extend what we learn from these reciprocals
to decimal representations of any positive number “_ where m and n are positive
integers and m < n because of the following resuit: /[ f™ is in lowest terms, the gen-
eral form of the decimal representation of " is the same as that of ! (See Problem 2.)

By the general form of a decimal representation, we mean not only the type (ter-
minating, simple-periodic. delayed-periodic), but also the length of the strings of digits
in each part (the values of  and p in the notation of the second column of Table 3). The

* proof of this result will become apparent as we work through each type.

The big picture

Table 4 summarizes the results that are deduced in the remainder of this sectjon.
We need only consider rational numbers x between 0 and 1 written as x = = in low-
est terms because any other rational number is the sum of x and an integer, and the

integer part of a rational number does not affect the general form of its decimal

representation,
Table 4
Type of Decimal Form of Decimal Rational Number { in Equivalent Form of
Representation Represeniation5 Lowest Terms Rational Number
o m M
terminating O.d oy d, 5 o
{(t = max of r and 5} (Theorem 2.6} (Theorem 2.5}
] o e m M
simple-periodic Ouddyds. d, TR T
{Theorem 2.8) {Theorem 2.7)
o — " M
delayed-periodic O0.dyd, . ..dd,odis o do, TICETI T TI 0108 ;—)
(+ = max of rand 5.1 > 8} {Theorem 2.14) (Theorem 2.9}

Terminating decimals

We begin with the simplest case: terminating decimals.

d i, 4 . 3 ] 2 s 5.
Suppose x = =+ o b F g where dy, d,, ..., d are | For example, because; = j5 + 77 T ;¢ Is Tepresented
nonnegative integers.d, # 0.and d, = 9fork = 1,....¢. | by the terminating decimal .623. Also.5 can be expressed

623

<. and
625 = 10%-6 + 10'-2 + 5,

Any such number is represented by the terminating dec- | a5 =

imal .d,d-...d, d, withd, # 0. Thenx = ;‘;whcm l

M = 107d, + 1072, + ... 10d,_, + d,.

3Throughout this section, strings of d; such as dydzds .. .d, stand for digits of a number {and not for
multiplication).
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Conversely, a fraction with a denominator thal is a power of 10 has a terminating
A 2

dacmml rzprcswtdum} that can be immediately written. For instance, ? w e

+ 7 = 00600902 You are asked to show this converse (see Problem 9},

7{(

' :ﬁ G) ffandenlvzfit can be rep sented i th rm_;x 5

To use Theorem 2.5, we need {o know whether or not a given rattonal number
" can be repruscnicd in the fo:m M For example, 55 and 7 can be represented in
tlm form, but m cannot.

Question 2: Explain why s and ; have terminating decimals but o does not.

There is a simple way of telling these cases apart.

Theorem 2.6

Proof:  Since the theorem is an if-and-only-if statement, both directions of the impli-
cation must be proved.

(=>) Suppose % has a decimal rf,prun,mauon D.ddsds. . d,. Then, by Theorem 2.5,
” can be rppr;sﬁ,ntud in the form * 5= where M is not divisible by 10.
Thus M may contain factors of 2 or 5 but not both. If we cancel these factors
in M with corresponding factors in the denominator, we obtain a denominator
n =72 +5" where ¢ is the larger of r and s,

(<) Suppose n = 27-5" and r = 5. Then we can write r = 5 + k for some non-
negative mtwa k,andso” = 5fg = "."%4 == ”Jf and »2- 3% is not divisible
by 10 because 7 is in Eov»m{ terms dﬂd n has factor of 2. Th;s shows that the
decimal rc,pru;(,nlatson of  consists of the decimal representation of the inte-

ger m - 5%, bul with the d«,umcﬁ point moved r digits to the left. Thecaser << 5
is s:mlldr. N

e

Question 3: What fraction ” in lowest terms is represented by the terminating dec-
imal 0.00056?

Question 4: Use Theorem 2.6 to find the number of digits in the decimal repre-
sentation for g. .

Decimals with simple-periodic representations

Theorem 2.6 shows that terminating decimals represent rational numbers in lowest
terms whose denominators consist only of powers of 2 and 5. Now, we consider the
decimal representations of those rational numbers in lowest terms whose denomi-
nators contain no powers of 2 and 5. Examples from Table 2 are written here.

| 1 S 1 1 — 1

— = {}3 - £) 14285 = ], — =) — n7
3 03 . {.142857 9 0.1 1 0.09 3 = 0.076923

It happens that these numbers all have simple-periodic decimal represeniations.
(The periods for the five numbers just given are 1,6,1.2, and 6, respectively.) Although
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simple to state, this property s not so ¢asy Lo prove. We first demonstrate that every
rational ™ that is represented by u simple-periodic decimal is equal to a fraction with a
denominator consisting of all 9s. For example. for the simple-periodic decimals from

Tabie 2,

a1 9 76923 o 1a8§7
-2 gi=> 009 = GITE0TS = 020 G TTRET = e .
05 =73 L=9 M= 5 0923 = o909 V1T T 50909

Notice not only that these simple-periodic decimals represent fractions with all 9sin
the denominator. but also that the length of the period tells us how many 9s there are.
It is easy to prove this.

Proof: Suppose x = 0.dydyds...d,. Multiply x by 107. Then subtract x to obtain
(109 — Ly = dydy...d,. a finite decimal. Then divide by 107 — 1 to obtain

~—*: that is, x can be expressed as a fraction in which the numerator is the
repetend of x and the denominator is the integer with p digits afl equal to 9. i |

Question 5: Represent 314 in this form,

We have proved the ( =} direction of a statement whose converse is also true.
That is. if a fraction can be writlen in a form (nol necessarily lowest terms) with a
denominator consisting of a string of 9s, then its decimal representation is simple-
periodic. You can get a feel for this fact by working with actual examples using a cal-
culator. The proof of the general statement is not difficult.

TB_e_éEe:_n_ 2

Proof: Having proved the { =) direction, we show the proof of the ( =) direction.
M and M is the integer d,dods ... d,. Now let M be the periodic
M

i
decimal .d dady —A o Consequently
12 3] 1 -

M= x. ' 1

Question 6: In the representation form guaranteed by this theorem, are M and
107 ~ 1 always relatively prime?

Suppose x =

Flow do we apply Theorem 2.7? For example, given a rational number such

. i . .
as ¢, how do we know whether 1t can be put in a form '["(,;;('LV”I with ali 9s in the
denominator? We now arc ready to prove the test we mentioned earlier.

erims and that

Proof:
{ =) If the rational number " has a simple-periodic decimal representation, then by

Theorem 2.7 it can be put in the form ?G;:f}f;_-—l, andsom-{10F — 1) = M-n If
11 were to have a factor of 2 or 5, then s would also have that factor, since clearty
107 — 1 cannot, But this would contradict the fact that “is in lowest terms. We
conclude that 7 can have no factor of 2 or 3.

{<) To prove the other direction of the if-and-only-if statement, suppose 2 and 5 are
not factors of #. Then, by Theorem 2.6,% cannot have a terminating decimal rep-
resentation, so it will have a periodic decimal representation with a period p.
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Consider the remainders r, that occur in the long division of m by n with
the numerator m regarded as the initial remainder r,. We know that for some
smallest nonnegative ¢, itis true that r. , = g for all k& == . We must show that
¢ = (); that is, that the remainders begin to repeat after the first p steps.

Suppose to the contrary that¢ = 0. Thenr,,, = rbutr,, # r,y. The
Division Algorithm implies that there exist integers q,. Gy Fo and 14 with
0 < r < nand0 < r., < nsuch that

105, = ng, + 1,
107,00 = 0y & Frap
for suitable nonnegative integers g, and ¢ . By subtracting the first of these
equations from the second and using the fact that r,. , = r,, We conciude that

IO(FH-;)——! - F!'-'-E) = n(CIm—p - qf}

Theretore, n is a divisor of 10(r,, ., — #,,}. Because n has no factors of 2 or
3.1 must be a divisor of r, o — Fes- But the remainders f,, ., and r,_; are
positive integers less than #, sO their difference r, ,y = ;. Is an integer
between —n and n. Because nisalsoa divisor of this integer, this integer must
be 0. Thus,r.. .. = F,_q.Cconirary (o our su osition that ¢ > 0. Therefore, the
Epet -1 J
. . , . L
decimal representation of % must be simple-periodic. . |

Decimals with delayed-periodic representations

The characteristics of delayed-periodic decimals are a combination of the character-
istics of the two previous cases (terminating decimals and simple-periodic decimals).
Delayed-periodic decimals result when the denominator of = in lowest terms has
both 2’s or 5's and some ather prime factors as well. The highest power of the 2 or
the 5 that divides n determines the length ¢ of the delay before the repetend star{s.
But the period itself is determined only from an equal fraction that is found in basi-
cally the same way as for simple-periodic decimals.

Question 7: Consider 5.
a. Give its decimal representation.

b. What is the length ¢ of the delay?

¢. What is the period p?
B__
10" - 17

where A and B are integers.

q A —!
d. Express = as a sum of the form 5 + 107

Proof:  Suppose x has the delayed-periodic decimal representation of the theorem.
Multipiy x by 10+ 10” 1o obtain

100107 x = dydy .. dydi oy disn o drapdii@ina- - desy
Then 107- 107 x — 10 -x =dydy.. . didpidir . desp = didy. ..d, = M,where M

M
et — 1)’

is an integer. Solve for x to obtain the desired result: x =
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To prov" e the othur direction of the theorem, as the answer to Question 7

illustrates, x = =5

10107 — 1)

for suitable constants A and B. The result follows from this fact.

for you.

7 can also be represented as a sum,

M -
I.__._ A U B<
10 107 -

The details are left

-

Theorem 2.9 gives a necessary and sufficient condition for 4 fraction to have a
delayed-periodic decimal representation.

Finally, we give the simple condition for predicting from the denominator 7 of
a rational number 7 in lowest terms those that have delayed-periodic forms. The
proof follows from our earlier results.

Youmight find it helpfui to refer back to Table 4, which provides a summary of
this section. Notice that the type of decimal representation for a rational number 7
in lowest terms is determined entirely by the factors of n (see Problem 2).

2.1.3 Problems

1. Use the theorems of the text to predict the general form of
the decimal representations of the reciprocals of the integers
17 to 41: that is, the type as well as the period and delay if the
type 1§ periodic.

2. Explain why, if 77 is a rational number between 0 and 1,
and if m and n are relatively prime, then the type of the
decimal representation of % is independent of . (Hine: Con-
sider the three types of d ccnnal representations separately.)

3. a. The rational number % has decimal represensation
(),()5263}378947368421. This can be verified by a pencil
and paper application of the Division Algorithm, but
this is laborious. [ would be nice to be able to do this
on a calculator, but many calculators show only 6 or 7
digits. Find a method for using a calculator to “piece
together™ the full 18 digits of the period of f_‘)‘

b. Find the decimal representation of .
4. Consider those reciprocals of primes that have simple-
periodic decimal representations. Using the theorems of the
section. prove that, of these:

There is exactly 1 with period 1. What 1s #t?

There is exactly 1 with period 2. What isit?

There is exactly | with pertod 3. What is it7?
d. There js exactly 1 with period 4. What is it?

e. There are exactly 2 with period 5. What are they?

i "There are exactly 2 with period 6. What are they?

5. Coensider those reciprocals of integers that have simple-
periodic decimal representations. Using the theorems of the
section, prove that, of these:

with period |. What are they?

with period 2. What are they?

a. There are exactly 2
b, There are exactly 3
c. There are exactly 5 with period 3. What are they?
6. a. Find the decimal representations for 25 and 5.
b. Explain the peculiar relationship between these decimals,
and find other pairs of decimals with the same relationship.
7. Find the prime factorization of integers of the form
10# — 1ior p= 1107 Whatis the relevance of these fac-
torizations fo the bdmx ior of decimal representations?

8. Coensider the decimal representations for 5:

etc.

Lo oS,
=

Find the other four representations. Notice that the digits of
the peried always appear in the same order. Is this peculiar
10 the denominator 7, or is it true of all prime denominators?

9. Prove the (¢=) direction of Theorem 2.5: [f x = E and
M 3s an mteger not divisible by 10, then x has a terminating
decimal representation.
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10. Another proof of ihe (<) impiication for Theorem 2.81s
based an a theorem proved by Euler. Euler’s theorem, which
is a generatization of Fermat’s Theorem (Section 5.3.2), states
that if natural numbers a and n are relatively prime (have no
cammoa factors larger than 1), then the number &' - 1 has
n as a factor. Here, ¢(#) is the Euler phi function, defined as
the number of natural numbers less than 7 and relatively
prime to . Since 10 and any number n with no factors of 2 or
5 are relatively prime, the theorem guarantees that
(10 — 1) = n- M for some integer M. Hence we can write
m  omM  m M

n one M 00—

So Ester's Theorem provides the denominator of 9s. Theo-
rem 2.7 now applies, showing that T has a simple-periodic dec-
imal representation.

Prave the following: The period p ol the decimal repre-

sentation of a rationai number % in Jowest lerms 55 divisor of

ANSWERS TO QUESTIONS

1. % = 0.03571428: delayed-periodic; remainders are 10, 16,
20, 4. 12, 8,24, 16, The second appearance of 16 indicates a
repetend 6 digits long; the first two quotients are 0 and 3, indi-
cating a delay of 2 digits before the repetend.

2. 750 = 2'-5% and 64 = 2°- 5%, but 60 = 3.27-5 which is

not a product of 2% and 57,
(I N
3. W 1S T et

214

the aumber ¢{n) of positive integers Jess than # that are

relatively prime 0 A,

11. Consider f—l You may need to refer to Problem 10,

4 Use the theorems of this section to exprain why its decimai
representation must be simple-periodic,

b. By computing ¢{21}. show that the period p of its decimal
representation must divide 12, and hence be equal to 1.2,
3,4.6,0r 12,

. Show that 21 must thus divide one of the numbers 99 949,
9909, 999999, or 9999999599499,

4 Show that the first of these numbers that 21 does divide is
105 — 1 = 999999 and conclude that the period must be .

¢. Compute the decimal for 4 to verity your result.

12. Finish the proof of Theorem 2.9,

13. Prove Theorem 2.10.

7 7

4. &= Hencer =4 s5=1 and so ¢ = 4. This means

there WEZH\ be 4 digits in the decimal representation of .
In fact, 5; = 0.0875.
5. ‘
6. No. For example, the representation of this form for031s5.
7. a. % = 032142857 b. 2

c. 6 d 2 =2 +107(5)

The distributions of various types of real numbers

I1 this section, we consider the following question: How are the rational numbers
and irrational numbers distributed among the real numbers? To answer this ques-
tion, we first note that every real number is either an integer or lies between two

integers.

" Theorem 2.11 [RAEEES

Proof:
mal representation of x

| x| = D — 1if xis negative.

This number # is the greatest integer less than or equal to x, | x }. If a dect-

is Ddydydy..., then [x] = Dif x is positive, and

A

The integers are sprinkled through the real numbers in the sense that it is easy
(o find two real numbers between which there is no integer. But even i there is no
integer between two real numbers x and y, there always is a rational number and an
irrational number between them.




