Fun Number Jeopardy

(a.k.a. Math4010 Midterm 1 Review)

<u>Sets/Venn Diagrams</u>

10 points-- List all subsets of {m, a, t, h}.

 Φ , $\{m\}$, $\{a\}$, $\{t\}$, $\{h\}$, $\{m,a\}$, $\{m,a\}$, $\{m,a,L\}$, $\{m,a,t,h\}$, $\{a,t,h\}$, $\{a,t,h\}$, $\{m,a,t,h\}$

Let T = the set of trumpet players, S = the set of sophomores, and E = the set of kids who excel in mathematics.

20 points—Shade in $(T \cup E) - S$ and describe that set in words.

the set of kids who are trumpet players or excel in math but who are not sophomores 30 points-- Shade in $(T \cup S) \cap E$ and describe that set in words.

Sets/Venn Diagrams (continued)

40 points-- Fill in the Venn Diagram with the following information:
In a group of kids, 10 have a cat but not a dog. Six children have no animals at all. Three own a cat and a dog. Four kids own only a bird.
Two kids have all three pets. Six children have a bird, but not a dog, and five have a dog and a bird. Twelve children have a dog.

C=cat D=day B=bird

DV 10 C not D

DV 6 none

DV 3 C and D

DV 4 Bonly

DV 2 Bonl Cond D

DV 6 B not D

DV 5 D and B

OV 12 D

50 points—For the above Venn Diagram, how many kids are in each of these sets?

(a)
$$(D \cap C) \cup B$$

(b)
$$(D \cup C) - (D \cap B)$$

(c) $\overline{B} \cup \overline{C}$

(d) $(B \cap C) - D$

Number Systems

10 points—Write 34 with the Tally System.

111

20 points—How many symbols/numerals are needed for a base 15 number system?

30 points—Write with the Roman Numeral System.

MMMCDXIX

40 points—Write 513 using the Mayan Number System.

Number Systems (continued)

50 points—Convert 281 to base 5.

bax 5
$$281 = 2(125) + 1(25)$$

$$-250$$

$$+1(5) + 1(1)$$

$$\frac{625}{125} = \frac{125}{25} = \frac{25}{125}$$

$$\frac{6}{125} = \frac{1}{125}$$

60 points—Convert 3167 to base 8.

base 8

$$3167 = 6(512) + 1(64)$$
 $4096 - 512 - 64 - 8 - 1$
 $10096 - 512 - 64 - 1$
 $10096 - 512 - 64 - 1$
 $10096 - 512 - 64 - 1$
 $10096 - 512 - 64 - 1$
 $10096 - 512 - 64 - 1$
 $10096 - 512 - 64 - 1$
 $10096 - 512 - 64 - 1$
 $10096 - 512 - 64 - 1$
 $10096 - 512 - 64 - 1$
 $10096 - 512 - 64 - 1$
 $10096 - 512 - 64 - 1$
 $10096 - 512 - 64 - 1$
 $10096 - 512 - 64 - 1$
 $10096 - 512 - 64 - 1$
 $10096 - 512 - 64 - 1$
 $10096 - 512 - 64 - 1$
 $10096 - 512 - 64 - 1$
 $10096 - 512 - 64 - 1$
 $10096 - 512 - 64 - 1$
 $10096 - 512 - 64 - 1$
 $10096 - 512 - 64 - 1$
 $10096 - 512 - 64 - 1$
 $10096 - 512 - 64 - 1$
 $10096 - 512 - 64 - 1$
 $10096 - 512 - 1$
 $10096 - 512 - 1$
 $10096 - 512 - 1$
 $10096 - 512 - 1$
 $10096 - 512 - 1$
 $10096 - 512 - 1$
 $10096 - 512 - 1$
 $10096 - 512 - 1$
 $10096 - 512 - 1$
 $10096 - 512 - 1$
 $10096 - 512 - 1$
 $10096 - 512 - 1$
 $10096 - 512 - 1$
 $10096 - 512 - 1$
 $10096 - 512 - 1$
 $10096 - 512 - 1$
 $10096 - 512 - 1$
 $10096 - 512 - 1$
 $10096 - 512 - 1$
 $10096 - 512 - 1$
 $10096 - 512 - 1$
 $10096 - 512 - 1$
 $10096 - 512 - 1$
 $10096 - 512 - 1$
 $10096 - 512 - 1$
 $10096 - 512 - 1$
 $10096 - 512 - 1$
 $10096 - 512 - 1$
 $10096 - 512 - 1$
 $10096 - 512 - 1$
 $10096 - 512 - 1$
 $10096 - 512 - 1$
 $10096 - 512 - 1$
 $10096 - 512 - 1$
 $10096 - 512 - 1$
 $10096 - 512 - 1$
 $10096 - 512 - 1$
 $10096 - 512 - 1$
 $10096 - 512 - 1$
 $10096 - 512 - 1$
 $10096 - 512 - 1$
 $10096 - 512 - 1$
 $10096 - 512 - 1$
 $10096 - 512 - 1$
 $10096 - 512 - 1$
 $10096 - 512 - 1$
 $10096 - 512 - 1$
 $10096 - 512 - 1$
 $10096 - 512 - 1$
 $10096 - 512 - 1$
 $10096 - 512 - 1$
 $10096 - 512 - 1$
 $10096 - 512 - 1$
 $10096 - 512 - 1$
 $10096 - 512 - 1$
 $10096 - 512 - 1$
 $10096 - 512 - 1$
 $10096 - 512 - 1$
 $10096 - 512 - 1$
 $10096 - 512 - 1$
 $10096 - 512 - 1$
 $10096 - 512 - 1$
 $10096 - 512 - 1$
 $10096 - 512 - 1$
 $10096 - 512 - 1$
 $10096 - 512 - 1$
 $10096 - 512 - 1$
 $10096 - 512 - 1$
 $10096 - 512 - 1$
 $10096 - 512 - 1$
 $10096 - 512 - 1$
 $10096 - 512 - 1$
 $10096 - 512 - 1$
 $10096 - 512 - 1$
 10

70 points—Convert 111 to base 2.

base 2

$$111 = 1(64) + 1(32) + 0(16)$$
 $8 = 64 = 32 = 16 = 8 = 4 = 2 = 1$
 $111 = 1(8) + 1(4) + 1(2) + 1(1)$
 $111 = 1(8) + 1(4) + 1(2) + 1(1)$
 $111 = 1(8) + 1(4) + 1(2) + 1(1)$
 $111 = 1(8) + 1(4) + 1(2) + 1(1)$
 $111 = 1(8) + 1(4) + 1(2) + 1(1)$
 $111 = 1(8) + 1(4) + 1(2) + 1(1)$
 $111 = 1(8) + 1(4) + 1(2) + 1(1)$
 $111 = 1(8) + 1(4) + 1(2) + 1(1)$
 $111 = 1(8) + 1(4) + 1(2) + 1(1)$
 $111 = 1(8) + 1(4) + 1(2) + 1(1)$
 $111 = 1(8) + 1(4) + 1(2) + 1(1)$
 $111 = 1(8) + 1(4) + 1(2) + 1(1)$
 $111 = 1(8) + 1(4) + 1(2) + 1(1)$
 $111 = 1(8) + 1(4) + 1(2) + 1(1)$
 $111 = 1(8) + 1(4) + 1(2) + 1(1)$
 $111 = 1(8) + 1(4) + 1(2) + 1(1)$
 $111 = 1(8) + 1(4) + 1(2) + 1(1)$
 $111 = 1(8) + 1(4) + 1(2) + 1(1)$

Number Systems (continued)

80 points—Convert 10211102, to base 10.
$$|0211102|$$

base 3 = $|(2187) + 0(729)|$
 $2187 + 729 = 243 = 81 = 27 = 9 = 3 = 1 = 1 = 10211102$
 $+1(27) + 1(9) = 10211102$
 $+0(3) + 2(1) = 10211102$
 $+0(3) + 2(1) = 10211102$

90 points—Convert 43501_6 to base 10.

base 6
$$+5(3+1)+o(6)+1(1)$$

$$1294 214 36 6 1$$

$$= 5184 + 648 + 180 + 1$$

$$= 6013$$

Problem Solving

10 points—If a fence requires a post every 5 feet, how many posts are required for a fence that encloses a 90 ft. by 50 ft. area of land?

20 points—In three years, Mary will be three times my present age. I will then be half as old as she. How old am I now?

then be half as old as she. How old am Thowe

$$X = my$$
 present age

 $m = many$'s age more

 $m = many$'s age more

30 points—A letter was posted that was covered with 10-cent and 5-cent stamps. There were 12 stamps altogether, and the total postage was 70 cents. How many of each stamp were on the letter?

$$X= \pm 104$$
 stamps $y= \pm 54$ stamps
 $x+y=12$ $10x+5y=70$
 $y=12-x$ $\rightarrow 10x+5(12-x)=70$
 $10x+60-5x=70$
 $10x+60-5x=70$

Problem Solving (continued)

40 points—A certain type of tubing comes in lengths of 6-ft., 8-ft, and 10-ft. sections. How many different lengths can be formed using 4 sections of

tubing?

$$6+8+8+10 = 32$$

 $6+8+10+10 = 34$
 $6+10+10+10 = 36$
 $8+8+8+8 = 32$

$$8+8+10+10 = 38$$

 $8+10+10+10 = 38$
 $10+10+10+10 = 49$

50 points—Two friends are shopping together when they encounter a special "3 for 2" shoe sale. If they purchase two pairs of shoes at the regular price, a third pair (of lower or equal value) will be free. Neither friend wants three pairs of shoes, but Pat would like to buy a \$56 and a \$39 pair of shoes while Chris is interested in a \$45 pair. If they buy the shoes together to take advantage of the sale, what is the fairest share for each to pay?

Pat < \$56

total \$ 140 Value

they pay 20+45= \$101

Chris 45 = 0.32

0.32(b)= \$32.32 Chris 0,68(101) \$ \$68.68 Pat

60 points—There are six baseball teams in a tournament. The teams are lettered A through F. Each team plays each of the other teams twice. How many games are played altogether?

AB AC

AD

BC BD CE

DE CDOF

BE CF BF

AK

AF 4+3+2+1=15 to each play

5 t every team once
every team once
) to play each team twice
means [30 games]

q different lengths,