LOs:

- Determine whether a vector is an eigenvector of a matrix; similarly, determine if a scalar is an eigenvalue of a matrix.
- Identify the eigenspace of a matrix A and relate it to the null space of the matrix $A-\lambda I$.
- Describe how eigenvalues are related to invertibility.

Motivating Example: The steady-state vectors for stochastic matrices described in Section 4.9 are a special case of the concept of eigenvectors and eigenvalues for $n \times n$ matrices in general.

Idea:
Eigenvectors of a matrix A are vectors on which the transformation described by A acts as a scalar.

- eigenvectors are vectors that jüst get "stretched" by A.

For example, consider the matrix transformation $T: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ where

$$
T\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right)=\left[\begin{array}{ll}
3 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

Definition 1 An eigenvector of an $n \times n$ matrix A is a nonzero vector \mathbf{x} such that $A \mathbf{x}=\lambda \mathbf{x}$ for some scalar λ. A scalar $\bar{\lambda}$ is called an eigenvalue of A if there exists a nontrivial solution \mathbf{x} of $A \mathbf{x}=\lambda \mathbf{x}$; such an \mathbf{x} is called an eigenvector corresponding to λ.
λ is called "Lambda")
Example: Show that 4 is an eigenvalue of $A=\left[\begin{array}{cc}0 & -2 \\ -4 & 2\end{array}\right]$ and find the corresponding eigenvectors.
Start here: $\left[\begin{array}{cc}0 & -2 \\ -4 & 2\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=4\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$

$$
\text { and solve for }\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

Example:
(a) Let

$$
A=\left[\begin{array}{cc}
0 & -2 \\
-4 & 2
\end{array}\right], \quad \mathbf{u}=\left[\begin{array}{l}
1 \\
1
\end{array}\right], \quad \mathbf{v}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

Is \mathbf{u} an eigenvector of A ? Is \mathbf{v} an eigenvector of A ? If so, find the associated eigenvalue.

$$
\begin{aligned}
& A \vec{u}=\left[\begin{array}{cc}
0 & -2 \\
4 & 2
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
-2 \\
-2
\end{array}\right]=-2\left[\begin{array}{l}
1 \\
1
\end{array}\right]=-2 \vec{u} \\
& A \vec{v}=\left[\begin{array}{cc}
0 & -2 \\
-4 & 2
\end{array}\right]\left[\begin{array}{c}
-1 \\
1
\end{array}\right]=\left[\begin{array}{c}
-2 \\
6
\end{array}\right] \quad \begin{array}{l}
\text { notice this is Not a scaled } \\
\text { version of } \vec{v} \text {) }
\end{array}
\end{aligned}
$$

Answer?
(b) Draw \mathbf{u} and \mathbf{v} in \mathbb{R}^{2}. Then, draw $A \mathbf{u}$ and $A \mathbf{v}$ in \mathbb{R}^{2}. Describe the action of a linear transformation on its eigenvector (s).

Notice that geometrically $A \vec{u}$ gives back vector in direction of \vec{u} (scaled) but $A \vec{v}$ gives back a totally differently orient
\qquad $\mathrm{x}=0$
Observation: λ is an eigenvalue of an $n \times n$ matrix A if and only if the equation has a nontrivial solution.
Hunt: remember that λ is eigenvalue if

$$
A \vec{x}=\lambda \vec{x} \Leftrightarrow A \vec{x}-\lambda \vec{x}=\overrightarrow{0} \Leftrightarrow(A-\lambda I) \vec{x}=\overrightarrow{0}
$$

Definition 2 The set of all solutions to the equation $(A-\lambda I) \mathbf{x}=\mathbf{0}$ is a subspace of \mathbb{R}^{n} called the eigenspace of A corresponding to λ. Note: The eigenspace of A is the null space of the matrix $A-\lambda I$.
(go back to last example \& find eigenspace of A Example: Let $A=\left[\begin{array}{rrr}2 & 0 & 0 \\ -1 & 3 & 1 \\ -1 & 1 & 3\end{array}\right]$. An eigenvalue of A is $\lambda=2$. Find a basis for the corresponding eigenspace.
start here:

$$
\frac{\text { start here: }}{(1) A-\lambda I}=A-2 I=\left[\begin{array}{ccc}
2 & 0 & 0 \\
-1 & 3 & 1 \\
-1 & 1 & 3
\end{array}\right]-\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right]=\left[\begin{array}{ccc}
0 & 0 & 0 \\
-1 & 1 & 1 \\
-1 & 1 & 1
\end{array}\right]
$$

(2) Solve $(A-\lambda I) \vec{x}=\overrightarrow{0}$ for \vec{x}.
(3) Find basis for null space of A-AI (i.e. eigenspace of A corresponding to $\lambda=2$). Extra-can we draw this eigenspace?

Exercise: Suppose λ is an eigenvalue of A. Determine an eigenvalue of $A^{2}, A^{3}, \ldots, A^{n}$. (Ass um e $\begin{aligned} & \text { is } m \times u \text {) }\end{aligned}$ We assume (because it's given to w) that $\exists \vec{x} \in \mathbb{R}^{n}$ sit.

$$
A \vec{x}=\lambda \vec{x}
$$

Theorem 1 The eigenvalues of a triangular matrix are the entries on the main diagonal.
This is really powerful 4 cool. It gives us one idea of how to find eigenvalues.
let's see how it works, by than doing a proof.

Example: Let $A=\left[\begin{array}{ccc}3 & 6 & -8 \\ 0 & 0 & 6 \\ 0 & 0 & 2\end{array}\right]$. Find the eigenvalues of $A . \quad A-\lambda I=\left[\begin{array}{ccc}3-\lambda & 6 & -8 \\ 0 & -\lambda & 6 \\ 0 & 0 & 2-\lambda\end{array}\right]$ $(A-\lambda I) \vec{x}=\overrightarrow{0}$ has iff there is at least one free variable nontrivial solus iff i.e. if either ${ }^{(1)} 3-\lambda=0$ or ${ }^{(2)}-\lambda=0$ $\Rightarrow \lambda=0,2,3$ are e-values

$$
\text { or } 2-\lambda=0
$$

(a) If a matrix A has $\lambda=0$ as an eigenvalue, what must be true about the solution set of the homogeneous equation $A \mathbf{x}=\mathbf{0}$?
(b) Based on your answer to part(a), is a matrix with a 0 eigenvalue invertible? Why or why not?

Theorem 2 If $\mathbf{v}_{1}, \ldots, \mathbf{v}_{r}$ are eigenvectors that correspond to distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{r}$ of an $n \times n$ matrix A, then the set $\left\{\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{r}}\right\}$ is linearly independent.

Why? Prs to explore:
(1) could the zeN vector be in $\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{r}\right\}$?
we know $A \vec{D}=\lambda \overrightarrow{0}$ is alwaystrue for any value of λ. So since we know all λ_{i} (for $i=1, \ldots, r$) are distinct, then \vec{D} cannot be an
only ore e-value.
(2) could one of the e-vectors be a linear combs of the others?
let's assure, as an example, that $\vec{v}_{3}=\vec{v}_{1}+\vec{v}_{2}$ And remenuler that \vec{v}_{3} corresponds to $\lambda_{3}, \vec{v}_{2}+\lambda_{2}$, etc.
We know (1) $A \vec{v}_{3}=\lambda_{3} \vec{v}_{3}$

$$
\text { But }{ }^{(2)} A \vec{v}_{3}=A\left(\vec{v}_{1}+\vec{v}_{2}\right)=A \vec{v}_{1}+A \vec{v}_{2}=\lambda_{1} \overrightarrow{1}_{1}+\lambda_{2} \vec{v}_{2}
$$

τ (by our assumption)
This implies (1) = (2) or $\lambda_{3} \vec{v}_{3}=\lambda_{1} \vec{v}_{1}+\lambda_{2} \vec{v}_{2}$

$$
\Leftrightarrow \lambda_{3}\left(\vec{v}_{1}+\vec{v}_{2}\right)=\lambda_{1} \vec{v}_{1}+\lambda_{2} \vec{v}_{2}
$$

But this is a contradiction since $\vec{v}_{1} \Perp \vec{v}_{2}$.
\Rightarrow Dur assumption cannot be correct, 1 -e. \vec{v}_{3} is independent of $\vec{v}_{1} \& \vec{v}_{2}$.

ELIs:

- Find the eigenvalues of a square n_{n} matrix using the characteristic equation.
- Define a similarity transform and explain how the eigenvalues of similar matrices are related.

Review: Eigenvectors and Eigenvalues

$$
A \vec{x}=\lambda \vec{x}
$$

\vec{x} is called eigenvector
λ is called eigenvalue

Question: How do we find the eigenvectors x of A ?
Solve $(A-\lambda I) \vec{x}=\overrightarrow{0}$ for nontrivial solus \vec{x}.

Question: How do we find the eigenvalues λ of A ?
You find λ-values also when you solve
$(A-\lambda I) \vec{x}=\overrightarrow{0}$ but the algebra can get messy... there's a better way!

Definition $1 A$ scalar λ is an eigenvalue of an $n \times n$ matrix A if and only if λ satisfies the characeristic equation

$$
\operatorname{det}(A-\lambda I)=0
$$

$p(\lambda)=\operatorname{det}(A-\lambda I)$ is the n degree characteristic polynomial of $A_{n \times n}$.
Example: Find the eigenvalues of $A=\left[\begin{array}{ll}3 & 2 \\ 1 & 2\end{array}\right]$.

$$
\begin{aligned}
& A-\lambda I=\left[\begin{array}{cc}
3-\lambda & 2 \\
1 & 2-\lambda
\end{array}\right] \\
& \operatorname{det}(A-\lambda I)=(3-\lambda)(2-\lambda)-2=0 \\
&-\lambda^{2}-5 \lambda+4=0 \\
& \lambda^{2}+5 \lambda-4=0 \\
&(\lambda-4)(\lambda-1)=0 \Leftrightarrow \lambda=1,4
\end{aligned}
$$

Why is this true? To find λ, solve $(A-\lambda I) \vec{x}=\overrightarrow{0}$ for nontrivial solus $\Leftrightarrow A-\lambda I$ is not invertible
$\operatorname{det}(A-\lambda I)=0$.

Notation:

- λ_{j} can be an eigenvalue for some (nonzero) eigenvector \mathbf{x} if and only if λ_{j} is a root of the characteristic polynomial. That is, $p\left(\lambda_{j}\right)=0$.
- The subspace of eigenvectors for the eigenvalue λ_{j} is called the λ_{j} eigenspace and denoted $E_{\lambda_{j}}$. The basis of eigenvectors is called the eigenbasis for $E_{\lambda_{j}}$.

$$
\text { Example: Given } A=\left[\begin{array}{rrr}
4 & -2 & 1 \\
2 & 0 & 1 \\
2 & -2 & 3
\end{array}\right]
$$

$$
A-\lambda I=\left[\begin{array}{ccc}
4-\lambda & -2 & 1 \\
2 & -\lambda & 1 \\
2 & -2 & 3-\lambda
\end{array}\right]
$$

(a) Find the eigenvalues, λ_{j}, of A.

$$
\begin{aligned}
& \operatorname{det}(A-\lambda I)=(4-\lambda)\left|\begin{array}{cc}
-\lambda & 1 \\
-2 & 3-\lambda
\end{array}\right|+2\left|\begin{array}{cc}
2 & 1 \\
2 & 3-\lambda
\end{array}\right|+1\left|\begin{array}{cc}
2 & -\lambda \\
2 & -2
\end{array}\right| \\
& \quad=(4-\lambda)\left(\lambda^{2}-3 \lambda+2\right)+2(6-2 \lambda-2)+(-4+2 \lambda) \\
& =-\lambda^{3}+7 \lambda^{2}-16 \lambda+12=(\lambda-2)\left(-\lambda^{2}+5 \lambda-6\right)=(\lambda-2)(\lambda-2)(3-\lambda)
\end{aligned}
$$

$\Rightarrow \quad \begin{aligned} &\left.(\lambda-2)^{2}(3-\lambda)\right)=0 \text { gives solutions } \\ & 4 \text { characteristic polynomial for } A\end{aligned}$

$$
\lambda=2,3
$$

note: there are 2 distinct
(b) Find the corresponding eigenspaces, $E_{\lambda_{j}}$.
for $\quad A-2 T=[2-2, \quad$ PREF $\quad \lambda=2$ has multiplicity 2
Since factor $(x-2)$
has exponent of 2
$(A-2 I) \vec{x}=\overrightarrow{0} \Leftrightarrow \vec{x}=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{c}x_{2}-\frac{1}{2} x_{3} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 0\end{array}\right] x_{2}+\left[\begin{array}{c}-y_{2} \\ 0 \\ 1\end{array} x^{3}\right.$ in characteristic \quad polynomial)

$$
\Rightarrow E_{2}=\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-1 / 2 \\
0 \\
1
\end{array}\right]\right\}
$$

notice A maps vectors from \mathbb{R}^{3} to \mathbb{R}^{3} and dimension of E_{2} is 2 and dimension of E_{3} is $1 \ldots 1+2=3$.
(2) for $\lambda=3$, we get (by same process)

Observation: By collecting the eigenbases from all of the eigenspaces for a matrix $A_{n \times n}$, and putting them together, we may obtain a basis for \mathbb{R}^{n}. Under such conditions as those described in Theorem 2, we are able to understand the geometry of the transformation $T(\mathbf{x})=A \mathbf{x}$ almost as well as if A were a diagonal matrix, and thus, we say that A is diagonalizable (to be continued in Section 5.3).

Remuider:

Theorem 2 If $\mathbf{v}_{1}, \ldots, \mathbf{v}_{r}$ are eigenvectors that correspond to distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{r}$ of an $n \times n$ matrix A, then the set $\left\{\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{r}}\right\}$ is linearly independent.

Example: Given $A=\left[\begin{array}{ccc}3 & 2 & 3 \\ 0 & 6 & 10 \\ 0 & 0 & 2\end{array}\right]$.
(a) Find the characteristic equation of A.
(b) Find the eigenvalues of A.

Definition 2 The degree n polynomial $\operatorname{det}(A-\lambda I)$ is called the characteristic polynomial. The (algebraic) multiplicity of an eigenvalue is its multiplicity as a root of the characteristic equation.

Example: Given $A=\left[\begin{array}{rrrr}2 & 0 & 0 & 0 \\ 5 & 3 & 0 & 0 \\ 9 & 1 & 3 & 0 \\ 1 & 2 & 5 & -1\end{array}\right]$.
(a) Find the characteristic polynomial of A.
(b) Find the eigenvalues of A and the algebraic multiplicity of each eigenvalue.

Definition 3 For $n \times n$ matrices A and B, we say A is similar to B if there is an invertible matrix P such that

$$
P^{-1} A P=B \Longleftrightarrow A=P B P^{-1}
$$

Example: Show that if A and B are similar, then $\operatorname{det}(A)=\operatorname{det}(B)$. Note: If Ais similar to B, then B is similar to A.

Theorem 3 If $n \times n$ matrices A and B are similar, then they have the same characteristic polynomial and hence, the same \qquad (with the same multiplicities).

$$
\begin{aligned}
\text { Proof: By defn, } B & =P^{-1} A P . \\
\Rightarrow B-\lambda I=P^{-1} A P-\lambda I & \left.=P^{-1} A P-\lambda P^{-1} P \quad \text { P } P \quad \text { since } P^{-1} P=I\right) \\
& =P^{-1}(A) P-P^{-1}(\lambda I) P \\
& =P^{-1}(A-\lambda I) P
\end{aligned}
$$

=)
$\operatorname{det}(B-\lambda I)=\operatorname{det}\left(P^{-1}(A-\lambda I) P\right)=\operatorname{det}\left(P^{-1}\right) \operatorname{det}(A-\lambda I) \operatorname{det}(P)$

$$
\begin{aligned}
& \operatorname{det}\left(P^{-1}(A-\lambda I) \operatorname{det}\left(\rho^{-1} \rho\right) \operatorname{det}(A-\lambda I)=\operatorname{det}(I) \operatorname{det}(A-\lambda I)\right. \\
& =A \& B \text { have same }
\end{aligned}
$$

$$
\begin{aligned}
& =\operatorname{det}\left(p^{-1} p\right) \operatorname{det}(A-\lambda I) \Leftrightarrow A \Leftrightarrow B \text { have same } \\
& =\operatorname{det}(A-\lambda I) \Leftrightarrow \text { sam }
\end{aligned}
$$

characteristic polynomial (ψ same eigenvalues).

Warning: Similar \Rightarrow same eigenvalues, but same eigenvalues \nRightarrow similar.
ex $\left[\begin{array}{cc}2 & 10 \\ 0 & 2\end{array}\right]$ and $\left[\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right]$ have same evil.

Let A be a square $n \times n$ matrix. Then the following statements are equivalent. That is, for a given A, the statements are either all true or all false.
(a) A is an invertible matrix.
(b) A is row equivalent to the $n \times n$ \qquad matrix.
(c) A has \qquad portions.
(d) The equation $A \mathbf{x}=\mathbf{0}$ has only the \qquad solution.
(e) The columns of A form a linearly \qquad set.
(f) The linear transformation $\mathrm{x} \mapsto A \mathrm{x}$ is \qquad .
(g) The equation $A \mathbf{x}=\mathbf{b}$ has \qquad solution for each \mathbf{b} in \mathbb{R}^{n}.
(h) The columns of A \qquad \mathbb{R}^{n}.
(i) The linear transformation $\mathbf{x} \mapsto A \mathbf{x}$ maps \mathbb{R}^{n} \qquad \mathbb{R}^{n}.
(j) There is an $n \times n$ matrix C such that $C A=$ \qquad .
(k) There is an $n \times n$ matrix D such that $A D=$ \qquad $-$
(l) A^{T} is an \qquad matrix.
(m) The \qquad of A form a basis of \qquad .
(n) $\operatorname{Col} A=$ \qquad
(o) $\operatorname{dim}(\operatorname{Col} A)=$ \qquad
(p) $\operatorname{rank} A=$ \qquad
(q) $\operatorname{Nul} A=$ \qquad
(r) $\operatorname{dim}(\operatorname{Nul} A)=$ \qquad
(s) \qquad is not an eigenvalue of A.
(t) $\operatorname{det}(A) \neq$ \qquad

Similarity
is Not the same as

* Row ops usually change eigenvalues.

LOs:

- Relate the similarity transform of a matrix to the eigenvectors of that matrix.
- Use eigenvalues and eigenvectors to diagonalize an $n \times n$ matrix A.
- Determine whether a matrix A is diagonalizable or not.

Goal: Develop a useful factorization $A=P D P^{-1}$ where P is the matrix of linearly independent eigenvectors of A and D is the diagonal matrix of corresponding eigenvalues.

Warm-Up: Given $D=\left[\begin{array}{ll}2 & 0 \\ 0 & 3\end{array}\right]$.

(a) Find the eigenvalues and eigenvectors (eigenspace bases) of D.
(b) Find D^{10}.
(c) Find D^{k} where $k \in \mathbb{Z}^{+}$.

Example: Consider $A=\left[\begin{array}{rrr}4 & -2 & 1 \\ 2 & 0 & 1 \\ 2 & -2 & 3\end{array}\right]$. (Note: this is one exaruple we used is section 5.2.)
Let $P=\left[\begin{array}{rrr}1 & -1 & 1 \\ 1 & 0 & 1 \\ 0 & 2 & 1\end{array}\right]$ be the matrix whose columns are the eigenvectors of A.
Let $D=\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3\end{array}\right]$ be the diagonal matrix whose diagonal entries are the eigenvalues of A.
Check: $A P=P D \quad \Rightarrow \quad A=P D P^{-1}$

Example: Using this factorization of A, find A^{100}.

$$
\begin{aligned}
A^{2}=A A=P D P^{-1} P D P^{-1}=P D I D P^{-1}=P D^{2} P^{-1} \\
A^{3}=A A^{2}=P D P P^{-1} P D^{2} P^{-1}=P D D^{2} P^{-1}=P D^{3} P^{-1} \\
\text { and since } D \text { is a dias }
\end{aligned}
$$

and $\sin c e D$ is a diagonal matrix, $\therefore A^{100}=P D^{100} P^{-1}$ D^{100} is quickly computed.
Definition $1 A$ square matrix A is said to be diagonalizable if A is similar to a diagonal matrix. That $i s$,

$$
A=P D P^{-1}
$$

where P is invertible and D is a diagonal matrix.
Note: If there is a basis $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ of \mathbb{R}^{n} (or \mathbb{C}^{n}) consisting of eigenvectors of A, then A is diagonalizable.

Warning: NOT all $n \times n$ matrices are diagonalizable!

Theorem 5 An $n \times n$ matrix A is diagonalizable if and only if A has n linearly independent eigenvectors.

In fact, $A=P D P^{-1}$ with diagonal matrix D if and only if the columns of P are n linearly independent eigenvectors of A. The diagonal entries of D are the eigenvalues of A that correspond, respectively, to the eigenvectors in P.
A is diagonalizable if and only if there exists an eigenvector basis of \mathbb{R}^{n}.

Example: Diagonalize $A=\left[\begin{array}{rrr}2 & 0 & 0 \\ 1 & 2 & 1 \\ -1 & 0 & 1\end{array}\right]$, if possible.
Step 1: Find the eigenvalues of A.
Generally,
(Note this step can be tedious. In general, you can use a computer to help with this.)

Step 2: Find the linearly independent eigenvectors of A.

Step 3: Construct P from the linearly independent eigenvectors found in Step 2. Note: this
step might be impossible if there
are fewer than 3 lin. indep. evectors
Step 4: Construct D from the corresponding eigenvalues found in Step 1. (then you know A is not diagonalizab6).

Step 5: Check by verifying $A P=P D$.

Exercise: Show that $B=\left[\begin{array}{lll}2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3\end{array}\right]$ is not diagonalizable. (Hunt: how many eigenvalues are there?)

Exercise: Is $C=\left[\begin{array}{lll}2 & 0 & 0 \\ 2 & 6 & 0 \\ 3 & 2 & 1\end{array}\right]$ diagonalizable? Justify your answer.

Warning: This is a sufficient condition for a matrix to be diagonalizable, but it's not necessary. n distinct evalues $\Rightarrow A$ is diagonalitable BUT it is possible for a matrix without n distinct evalues to be diagonalizable. (like example on pg 12)

Exercise: Diagonalize $A=\left[\begin{array}{rrrr}-2 & 0 & 0 & 0 \\ 0 & -2 & 0 & 0 \\ 24 & -12 & 2 & 0 \\ 0 & 0 & 0 & 2\end{array}\right]$, if possible.

$$
A-\lambda I=\left[\begin{array}{cccc}
-2-\lambda & 0 & 0 & 0 \\
0 & -2-\lambda & 0 & 0 \\
24 & -12 & 2-\lambda & 0 \\
0 & 0 & 0 & 2-\lambda
\end{array}\right]
$$

$$
\operatorname{det}(A-\lambda I)=(-2-\lambda)^{2}(2-\lambda)^{2}=0
$$

$$
\Leftrightarrow \lambda=2,-2
$$

$$
\begin{aligned}
& \lambda=2 \\
& \lambda-2 I=\left[\begin{array}{cccc}
-4 & 0 & 0 & 0 \\
0 & -4 & 0 & 0 \\
24 & -12 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \stackrel{\text { PREF }}{ } \quad\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \begin{array}{l}
x_{1}=0 \\
x_{2}=0 \\
x_{3}, x_{4}
\end{array} \text { free } \\
& (A-2 I) \vec{x}=\overrightarrow{0} \Leftrightarrow \vec{x}=\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right]^{x_{3}}+\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right] x^{x_{4}}
\end{aligned}
$$

$\Rightarrow \vec{V}_{1}=\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right] \quad \vec{v}_{2}=\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right]$ are 2 basis vectors for eigenspace
$\lambda=-2$

$$
A+2 I=\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
24 & -12 & 4 & 0 \\
0 & 0 & 0 & 4
\end{array}\right] \xrightarrow{\text { PREF }}\left[\begin{array}{cccc}
1 & -y_{2} & 1 / 6 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \begin{aligned}
& x_{1}=\frac{1}{2} x_{2}-\frac{1}{6} x_{3} \\
& x_{4}=0 \\
& x_{2}, x_{3} \text { free }
\end{aligned}
$$

$$
\begin{array}{r}
(A+2 I) \vec{x}=\overrightarrow{0} \Leftrightarrow \vec{x}=x_{2}\left[\begin{array}{c}
1 / 2 \\
1 \\
0 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{c}
-1 / 6 \\
0 \\
1 \\
0
\end{array}\right] \Rightarrow \vec{v}_{3}=\left[\begin{array}{c}
1 / 2 \\
1 \\
0 \\
0
\end{array}\right]
\end{array} \quad \vec{v}_{4}=\left[\begin{array}{l}
\text { are bass vector } \\
\\
\begin{array}{l}
\text { eigenspace } E_{-2}
\end{array}
\end{array}\right.
$$

$\Rightarrow A P=P D$ sit.

$$
P=\left[\begin{array}{cccc}
0 & 0 & 1 / 2 & -1 / 6 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 0
\end{array}\right] \quad D=\left[\begin{array}{cccc}
2 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & -2 & 0 \\
0 & 0 & 0 & -2
\end{array}\right]
$$

Theorem 7 Let A be an $n \times n$ matrix whose distinct eigenvalues are $\lambda_{1}, \ldots, \lambda_{p}$.
(a) For $1 \leq k \leq p$, the dimension of the eigenspace for λ_{k} is less than or equal to the multiplicity of the eigenvalue λ_{k}.
(b) The matrix A is diagonalizable if and only if the sum of the dimensions of the distinct eigenspaces equals n, which happens if and only if the dimension of the eigenspace for each λ_{k} equals the multiplicity of λ_{k}.
(c) If A is diagonalizable and \mathcal{B}_{k} is a basis for the eigenspace corresponding to λ_{k} for each k, then the total collection of vectors in the sets $\mathcal{B}_{1}, \ldots, \mathcal{B}_{p}$ forms an eigenvector basis for \mathbb{R}^{n}.

LOs:

- Recognize non-square matrices as transformations between dimensions.
- Construct a basis for a linear transformation T using eigenvectors.

Goal: Understand the matrix factorization $A=P D P^{-1}$ in terms of linear transformations.
Warm-up: Let $\mathcal{B}=\left\{\left[\begin{array}{l}2 \\ 1\end{array}\right],\left[\begin{array}{c}1 \\ -1\end{array}\right]\right\}$ be basis for \mathbb{R}^{2}.
(a) Given $[\mathbf{x}]_{\mathcal{B}}=\left[\begin{array}{l}1 \\ 3\end{array}\right]$. Find \mathbf{x}.
(b) Given $\mathbf{x}=\left[\begin{array}{l}3 \\ 0\end{array}\right]$. Find $[\mathbf{x}]_{\mathcal{B}}$.

Key Idea:
 v, w fonite-dim vector spaces $B=$ basis for V $C=$ as is for W

$$
m=\left[\begin{array}{lll}
{\left[T\left(\vec{b}_{1}\right)\right]_{c}} & {\left[T\left(\vec{b}_{2}\right)\right]_{c} \cdots} & {\left[T\left(\vec{b}_{n}\right)\right]_{c}}
\end{array}\right]
$$

where $B=\{\vec{b}, \ldots, \vec{b}\}$
M is the matrix for T relater to the base $B+C$

Example: Suppose $\mathcal{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}\right\}$ is a basis for V and $\mathcal{C}=\left\{\mathbf{c}_{1}, \mathbf{c}_{2}, \mathbf{c}_{3}\right\}$ is a basis for W. Let $T: V \rightarrow W$ be a linear transformation defined by its action on \mathcal{B} :

$$
\begin{aligned}
& T\left(\mathbf{b}_{1}\right)=3 \mathbf{c}_{1}-2 \mathbf{c}_{2}+5 \mathbf{c}_{3} \\
& T\left(\mathbf{b}_{2}\right)=4 \mathbf{c}_{1}+7 \mathbf{c}_{2}-\mathbf{c}_{3} .
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{dim}(v)=2 \\
& \operatorname{dim}(w)=3
\end{aligned}
$$

Find the matrix M for T relative to \mathcal{B} and \mathcal{C}.

$$
\left[T\left(a_{i}\right)\right]_{c}=\left[\begin{array}{c}
-\frac{3}{-2} \\
5
\end{array}\right]
$$

note: V and W same dimension M is not square.

One more example:
$T: \mathbb{P}_{2} \rightarrow \mathbb{P}_{2} \quad$ (notice it maps \mathbb{P}_{2} to itself)

$$
\begin{aligned}
& \mathbb{P}_{2} \rightarrow \mathbb{P}_{2} \quad \text { notice it maps } \\
& \text { s.t. } T\left(a_{0}+a_{1} t+a_{2} t^{2}\right)=5 a_{0}+\left(a_{0}-2 a_{1}\right) t+\left(8 a_{1}+3 a_{2}\right) t^{2} \text {. }
\end{aligned}
$$

Find matrix representation of T relative to standard basis $B=\left\{1, t, t^{2}\right\}$.

$$
T(1)=
$$

$$
T(t)=
$$

$$
T\left(t^{2}\right)
$$

$$
\begin{aligned}
& \Rightarrow[T(1)]_{B}= \\
& \Rightarrow[T(t)]_{B}= \\
& \Rightarrow\left[T\left(t^{2}\right)\right]_{B}=
\end{aligned}
$$

$$
\Rightarrow \quad M=[
$$

This is called B-matrix for T.

Definition 1 Two matrices A and B are similar if there is an invertible matrix P such that $B=P^{-1} A P$.
Note: Similar matrices arise when describing the same linear transformation with respect to col! different bases.

Example: What if A is diagonalizable?
If A is diagonalizable, then $\exists \Phi$ and Q^{-1}
sit. $A=Q D Q^{-1}$ and D is a diagonalmatrix, where the columns of Q are the linearly \Perp eigenvectors of A.

1 similar to
So if $A \sim B$, then

$$
\begin{aligned}
B & =p^{-1} A P \\
\Leftrightarrow B & =\rho^{-1}\left(Q D Q^{-1}\right) P \\
\Leftrightarrow B & =\left(\rho^{-1} Q\right) D\left(Q^{-1} P\right) \\
\Leftrightarrow B & =\left(p^{-1} Q\right) D\left(p^{-1} Q\right)^{-1}
\end{aligned}
$$

i.e. B is also diagonalizable!
i.e. we can represent linear xform defined by A as multiplication by a diagonal matrix instead.
Theorem 8 Diagonal Matrix Representation
Suppose $A=P D P^{-1}$, where D is a diagonal $n \times n$ matrix. If \mathcal{B} is the basis for \mathbb{R}^{n} formed from the columns of P, then D is the \mathcal{B}-matrix for the transformation of $\mathbf{x} \mapsto A \mathbf{x}$.

Example: Consider $A=\left[\begin{array}{ll}3 & 2 \\ 1 & 2\end{array}\right]$. In Section 5.2, we found $E_{\lambda=4}=\operatorname{span}\left\{\left[\begin{array}{l}2 \\ 1\end{array}\right]\right\}$ and $E_{\lambda=1}=\operatorname{span}\left\{\left[\begin{array}{c}1 \\ -1\end{array}\right]\right\}$.
Find $M=[T]_{\mathcal{B}}$.

$$
\begin{aligned}
& \text { Find } M=[T]_{\mathcal{B}} \text {. } \quad P=\left[\begin{array}{cc}
2 & 1 \\
1 & -1
\end{array}\right] \quad D=\left[\begin{array}{ll}
4 & 0 \\
0 & 1
\end{array}\right] \quad P^{-1}=\frac{1}{-3}\left[\begin{array}{cc}
-1 & -1 \\
-1 & 2
\end{array}\right]=\left[\begin{array}{cc}
1 / 3 & 1 / 3 \\
1 / 3 & -2 / 3
\end{array}\right]
\end{aligned}
$$

$$
B=\left\{\left[\begin{array}{l}
2 \\
1
\end{array}\right],\left[\begin{array}{r}
1 \\
-1
\end{array}\right]\right\}
$$

$$
\Rightarrow M=\left[\begin{array}{ll}
4 & 0 \\
0 & 1
\end{array}\right]
$$

Note: $\vec{x} \longmapsto A \vec{x}$ and $\vec{x} \mapsto \square_{\vec{x}}$ describe same linear x form relative to different bases
Example: Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ have the standard transformation matrix $A=\left[\begin{array}{cc}7 & 2 \\ -4 & 1\end{array}\right]$. Find a basis \mathcal{B} for \mathbb{R}^{2} such that the \mathcal{B}-matrix for T is diagonal. $\lambda=3$

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =(7-\lambda)(1-\lambda)+8 \\
& =15-8 \lambda+\lambda^{2} \\
& =(\lambda-3)(\lambda-5)=0 \\
& \Rightarrow \lambda=3,5
\end{aligned}
$$

Example: Let $A=\left[\begin{array}{ll}4 & -9 \\ 4 & -8\end{array}\right]$.
(a) Check that A is not diagonalizable using the eigenspace dimension theorem. (ice. Role at
 This matrix is called the Jordan form of A. $\sin a P^{-1} D N E$

$$
\begin{aligned}
& P^{-1}=\frac{1}{3-4}\left[\begin{array}{cc}
1 & -2 \\
-2 & 3
\end{array}\right]=-1\left[\begin{array}{cc}
1 & -2 \\
-2 & 3
\end{array}\right]=\left[\begin{array}{cc}
-1 & 2 \\
2 & -3
\end{array}\right] \\
& \Rightarrow B=P^{-1} A P=\left[\begin{array}{cc}
-1 & 2 \\
2 & -3
\end{array}\right]\left[\begin{array}{cc}
4 & -9 \\
4 & -8
\end{array}\right]\left[\begin{array}{ll}
3 & 2 \\
2 & 1
\end{array}\right]=\left[\begin{array}{cc}
-2 & 1 \\
0 & -2
\end{array}\right] \\
& \text { close as } \\
& \text { possible to }
\end{aligned}
$$ possible to being diagonal.

Note: Every square matrix A is similar to a matrix in Jordan form.
We could say a lot move about Jordan form matices...but wére moving on.
5.5 Complex Eigenvalues
\star We wont do this section in detail but I want to at least give you an overview of the ideas.
Overall idea: The eigenvalues (of a matrix w/ all \mathbb{R}-valued elements) can be complex \#s.
ex $A=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right] \quad \begin{array}{r}\text { which is a rotation } \\ \text { matrix }\end{array}$
matrix, clockwise by 90°.
This does not send any vectors to multiples of themselves! \Rightarrow no real eigenvalues.
But we can still find characteristic polynomial and look for eigenvalues.

$$
\begin{gathered}
\operatorname{det}(A-\lambda I)=\left|\begin{array}{rr}
-\lambda & -1 \\
1 & -\lambda
\end{array}\right|=\lambda^{2}+1=0 \\
\Rightarrow \lambda= \pm i
\end{gathered}
$$

eigenvectors Do exist If A acts on \mathbb{C}^{2} instead of \mathbb{R}^{2}

$$
\left.\left.\begin{array}{l}
\pi=i\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]\left[\begin{array}{c}
1 \\
-i
\end{array}\right]=\left[\begin{array}{c}
i \\
1
\end{array}\right]=i\left[\begin{array}{c}
1 \\
-i
\end{array}\right] \quad 2 \Rightarrow \text { eigenvectors } \\
\lambda=-i \\
0
\end{array} \begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
1 \\
i
\end{array}\right]=\left[\begin{array}{c}
-i \\
1
\end{array}\right]=-i\left[\begin{array}{c}
1 \\
i
\end{array}\right]\right\} \text { are }\left[\begin{array}{c}
1 \\
-i
\end{array}\right] \text { and }\left[\begin{array}{c}
1 \\
i
\end{array}\right]
$$

