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A-1

Apply dominated convergence theorem with dominating function |f| on
every h, — 0 to prove F(x+h,) — F(x). Arbitrariness of {h,} implies that
F' is continuous on x for every x € R.

A-2
We have [|Mgllz = (J; f29* dz)"* < [[flloo(fr 9° d2)'* = [ flscllgl 2.

To see [[M|| > || flloo, consider ge = sgn(f)X[—nnX{If|>|Ifle—c}> Where
n = n. is chosen s.t. u(|f] > ||f|lc — €,z € [=n,n]) > 0.

Therefore, [Mgcll3 = [=, |fPx s> 1f1we—a dit > ([ flloo=€)* a1 f] > | flloo—
e,z € [-n,n]) = ||gll22(||fllc — €)?. Since € is arbitrary, we have || M| >

1/ lloo-

A-3

(a) Let Tv = v, v # 0. Since (Tw,v) = A(v,v) = (v,Tv) = A(v,v) and
(v,v) >0, A is real.

(b) Let Tu = pu, Tv = dv, p # X and u,v # 0. We have (Tu,v) =
plu,v) = (u, Tv) = Mu,v). p# X = (u,v) = 0.

(c) For each A, we pick some ||z, || = 1 so that Tz, = A\,z,. We claim
that X = {D> 07 an®, : Y or; |as* < oo} is a closed subspace of H. For if
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Yk = Y oo QgaTy is Cauchy, ag, — b, as k — oo for each n € N. Given
e > 0, we have ||y, — yn|| < € for all m,n > K, and now we apply Fatou’s
lemma to get

o0 oo
E |bp — agen|* < liminf E |G, — Qren]?
k—o0

= liminf ||yx — yx| <e.
k—o0

1/2
Besides, we may pick K large so that (Zzozl |bn|2> < (ZZL |b, —

1/2 1/2
aKn|2> —|—<ZZ°:1 ]aKn]2> < oo. That is, Y 7 bz, € X. That y, —

> by, in X is equivalent to the fact that X is closed.

Since X is closed, we may decompose H = X & X+. We claim that
z, — 0. First, for each y € H we may write it as > ~_, aym&p + 2/, where
S ATy, € X and 27 € X1, We have

m=1
[eS)

(T, y) = (T, Z AT + ') = (T, Z AT

m=1 m=1
[e.e]

= (@, Y Gn®n) + (Tny Y )
m=1

m=n+1
00

= a, + (zp, Z AmTm) — 0 as n — 00.
m=n-+1

The above convergence is due to >, |a,,|* < co. We have shown our claim.

Next, since {x,}, is a bounded sequence, {Tx,}, is precompact in H.
We claim that Tz, — 0. If not, by precompactness of {T'x,}, we can find
a subsequence {T'z,,, }r so that T'z,,, — 2z # 0= Tx,, — z # 0. However,
r, — 0 implies Tz,, — 0 by that T is adjoint, which is a contradiction.
Therefore,

Tz, — 0= ||Tz,|]| — 0
= || Anzn] — 0
= || Al = 0
=\, — 0.

And the proof is complete.



A-4

See the sol A — 4 in spring 2008 real and complex analysis qualifying
exam. (Or directly from Rudin’s book.)

A-5

ITgll = ( / (Tg(a))? de)'? < ( / ( / K (2. 9)? dy) / £ (y)? dy) do)'/?

= 1 ey / / K(z,y) dydz
IJI

= || fllz2cr) K(z,y)*d(z x y)
IxI

where the last identity is due to Tonelli’s theorem.

B-6

I would prove further that if f(z) < A+ BJz|" for some A > 0,B > 0
and for all z € C, then f(z) is a polynomial of degree < n.

we first note that g(z) := w for z # 0 and ¢(0) = f’(0) is also an
entire function , for ¢ is holomorphic on C\ {0} and is continuous on C, thus
we may prove holomorphicity of g on C using Morera’s theorem.

The proof is by induction. When n = 0, this is Liouville’s theorem. For
n = N > 1, assume that f(z) < A+ B|z|", we have |g(z)| < W <
A’ + Blz|¥7! when |z| > 1, and |g(2)| < A” + B|z|¥~! when |z| < 1 since |g]
is bounded on bounded domains. Therefore, by induction hypothesis, g(z) is
a polynomial of degree < N — 1. Since g(z)z + f(0) = f(z) for every z € C,
f is a polynomial of degree < N, and this completes the proof.

B-7

(a) Let ¢(2) = Z—i, which is analytic on H, and for z = a + bi, b > 0,
i—z| =|—a+ (1 =20 < la+ (1+0b)i| = |i + 2|, which shows that
¢ : H— D :={z:]z] <1}. To see ¢(z) is onto and 1 — 1, for any



— i0 _ iz _ s1= 1—re® . 1-r2—2isin(f)
w=re’ eD r<l, w= = = ZF Trre® = Y1527 cos(0) € H.
Thus, we may define the inverse map of ¢ by ¢~1(2) = z— D — H. These

facts show that ¢ is a conformal map from H to D, Wthh takes ¢ to 0.

(b) Consider the holomorphic map ¢o fo¢™: D — D.

(@0 foo ) (0)=1¢'(f(6~(0))f (¢~ (0))(¢~)'(0)]
= [¢' (1) f'(i) (¢~ )( )|

)f(7)
= l¢' (Z)f’(l)
= |¢'(i) f"(4)

|
(¢ 1( )
— / y
S = 7
In the above lines we use the fact that |¢'(i)| # 0, for ¢ is an injective

holomorphic map. By Schwarz’s lemma, we have 1 > [(¢ o f o ¢ 1) (0)] =
| f'(i)|. If the equality holds, then ¢ o f o ¢~ 1(2) = €z, and thus

fz) =97 oePz00(2)

e 11—z
(b H—z

_ ‘1—6“%2

T ez

it z— (i —2)
_Zz’+z+e’9(z—z)
e (4 2) — e2(i — z)
B Z6*2'9/2(2' +z) + e®/2(i — 2)
1 —2isin(0/2) -i +2cos(0/2)z
T —i 2cos(6/2) i — 2isin(6/2)z
_ sin(0/2) + cos(0/2)z

cos(0/2) —sin(6/2)z"

B-8

Define g(z) = f(2) when 0 < Rez < 1. Define g(z) = g(2 —Z) when
1 < Rez < 2. We claim that g(z) is holomorphic on Ry := {2z : 1 <
Rez < 2}. To see this, for any zyp € Ry, there is some ¢ > 0 so that
B.,(€) C Ry». Since g(z) is holomorphic on Ry, := {z: 0 < Rez < 1}, we



have g(2—2) =Y~ 1, (2—Z—(2—%))" = > oo gGn(—1)"(2—20)", which
proves the existence of power series at every neighborhood of z € R; 5 and
hence our claim.

Since g(z) defined in this way is continuous on {z : 0 < Re z < 2} due to
the fact f(1 +iz) € R for ever x € R, and ¢(z) holomorphic on Ry; U Ry 2,
by Morera’s theorem, g(z) is holomorphic on {z : 0 < Rez < 2} . Also, from
our definition of g, g(ix) = g(2 +ix) for every xz € R, for f(iz) € RVx € R.

Now for every 2n < Re z < 2n+2, n € Z, we may define g(z) = g(z—2n).
It is straightforward that ¢ is holomorphic on 2n < Rez < 2n + 2. In addi-
tion, it is continuous on {z : Rez = 2n,n € Z}. By Morera’s theorem, g(z)
is holomorphic on C.

Since f and g coincide on Ry;, f = g by the uniqueness theorem. As a
result, for any z € C, f(2) =g(z) = g(z +2) = f(z + 2).

B-9

For each z € (), there is an e-ball centered at z and its closure is contained
in 2. Let C be its boundary. By Cauchy’s integral formula,

m%i]ﬂﬁa

_277'7/ CC—Z

=10 =g [ ks

for which the proof is omitted. Therefore, for ever f € F, |f/(2)| < &= - 4 -
2me := B,, where M is chosen that |f(w)| < M for all w € B,(e).

B-10

Let Cr = Re®, 0 goes from 0 to 7. By the residue theorem, f_RR (;?25—5:2 dr+
Z'f_RR S;Sfi dx + o, S5 dz = 2miRes(f;2i) = 2mi - % = Ze % Since
| Jo, #1142l < TR 57, let R — oo we have [*7 % de = Ze 2.



