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A-1

Apply dominated convergence theorem with dominating function |f | on
every hn → 0 to prove F (x+hn)→ F (x). Arbitrariness of {hn} implies that
F is continuous on x for every x ∈ R.

A-2

We have ‖Mg‖2 = (
∫
R f

2g2 dx)1/2 ≤ ‖f‖∞(
∫
R g

2 dx)1/2 = ‖f‖∞‖g‖L2(R).

To see ‖M‖ ≥ ‖f‖∞, consider gε = sgn(f)χ[−n,n]χ{|f |>‖f‖∞−ε}, where
n = nε is chosen s.t. µ(|f | > ‖f‖∞ − ε, x ∈ [−n, n]) > 0.

Therefore, ‖Mgε‖22 =
∫ n
−n |f |

2χ{|f |>‖f‖∞−ε} dµ ≥ (‖f‖∞−ε)2µ(|f | > ‖f‖∞−
ε, x ∈ [−n, n]) = ‖gε‖2L2(‖f‖∞ − ε)2. Since ε is arbitrary, we have ‖M‖ ≥
‖f‖∞.

A-3

(a) Let Tv = λv, v 6= 0. Since (Tv, v) = λ(v, v) = (v, Tv) = λ(v, v) and
(v, v) > 0, λ is real.

(b) Let Tu = µu, Tv = λv, µ 6= λ and u, v 6= 0. We have (Tu, v) =
µ(u, v) = (u, Tv) = λ(u, v). µ 6= λ⇒ (u, v) = 0.

(c) For each λn, we pick some ‖xn‖ = 1 so that Txn = λnxn. We claim
that X = {

∑∞
n=1 anxn :

∑∞
n=1 |an|2 < ∞} is a closed subspace of H. For if
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yk :=
∑∞

n=1 aknxn is Cauchy, akn → bn as k → ∞ for each n ∈ N. Given
ε > 0, we have ‖ym − yn‖ < ε for all m,n > K, and now we apply Fatou’s
lemma to get

∞∑
n=1

|bn − aKn|2 ≤ lim inf
k→∞

∞∑
n=1

|akn − aKn|2

= lim inf
k→∞

‖yk − yK‖ ≤ ε.

Besides, we may pick K large so that
(∑∞

n=1 |bn|2
)1/2

≤
(∑∞

n=1 |bn −

aKn|2
)1/2

+
(∑∞

n=1 |aKn|2
)1/2

< ∞. That is,
∑∞

n=1 bnxn ∈ X. That yk →∑∞
n=1 bnxn in X is equivalent to the fact that X is closed.

Since X is closed, we may decompose H = X ⊕ X⊥. We claim that
xn ⇀ 0. First, for each y ∈ H we may write it as

∑∞
m=1 amxm + x′, where∑∞

m=1 amxm ∈ X and x′ ∈ X⊥. We have

(xn, y) = (xn,
∞∑
m=1

amxm + x′) = (xn,
∞∑
m=1

amxm)

= (xn,
n∑

m=1

amxm) + (xn,
∞∑

m=n+1

amxm)

= an + (xn,
∞∑

m=n+1

amxm)→ 0 as n→∞.

The above convergence is due to
∑∞

m=1 |am|2 <∞. We have shown our claim.

Next, since {xn}n is a bounded sequence, {Txn}n is precompact in H.
We claim that Txn → 0. If not, by precompactness of {Txn}n we can find
a subsequence {Txmk}k so that Txmk → z 6= 0⇒ Txmk ⇀ z 6= 0. However,
xn ⇀ 0 implies Txn ⇀ 0 by that T is adjoint, which is a contradiction.
Therefore,

Txn → 0⇒ ‖Txn‖ → 0

⇒ ‖λnxn‖ → 0

⇒ ‖λn‖ → 0

⇒ λn → 0.

And the proof is complete.
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A-4

See the sol A − 4 in spring 2008 real and complex analysis qualifying
exam. (Or directly from Rudin’s book.)

A-5

‖Tg‖2 = (

∫ 1

0

(Tg(x))2 dx)1/2 ≤ (

∫ 1

0

(

∫ 1

0

K(x, y)2 dy)(

∫ 1

0

f(y)2 dy) dx)1/2

= ‖f‖L2(I)

∫
I

∫
I

K(x, y)2 dy dx

= ‖f‖L2(I)

∫
I×I

K(x, y)2 d(x× y)

where the last identity is due to Tonelli’s theorem.

B-6

I would prove further that if f(z) ≤ A + B|z|n for some A ≥ 0, B > 0
and for all z ∈ C, then f(z) is a polynomial of degree ≤ n.

we first note that g(z) := f(z)−f(0)
z

for z 6= 0 and g(0) = f ′(0) is also an
entire function , for g is holomorphic on C\{0} and is continuous on C, thus
we may prove holomorphicity of g on C using Morera’s theorem.

The proof is by induction. When n = 0, this is Liouville’s theorem. For

n = N > 1, assume that f(z) ≤ A+B|z|N , we have |g(z)| ≤ A+B|z|N+|f(0)|
|z| ≤

A′+B|z|N−1 when |z| > 1, and |g(z)| ≤ A′′+B|z|N−1 when |z| ≤ 1 since |g|
is bounded on bounded domains. Therefore, by induction hypothesis, g(z) is
a polynomial of degree ≤ N − 1. Since g(z)z + f(0) = f(z) for every z ∈ C,
f is a polynomial of degree ≤ N , and this completes the proof.

B-7

(a) Let φ(z) = i−z
i+z

, which is analytic on H, and for z = a + bi, b > 0,
|i − z| = | − a + (1 − b)i| < |a + (1 + b)i| = |i + z|, which shows that
φ : H → D := {z : |z| < 1}. To see φ(z) is onto and 1 − 1, for any
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w = reiθ ∈ D, r < 1, w = i−z
i+z
⇒ z = i1−w

1+w
= i1−re

iθ

1+reiθ
= i 1−r

2−2i sin(θ)
1+r2+2r cos(θ)

∈ H.

Thus, we may define the inverse map of φ by φ−1(z) = i1−z
1+z

: D → H. These
facts show that φ is a conformal map from H to D, which takes i to 0.

(b) Consider the holomorphic map φ ◦ f ◦ φ−1 : D → D.

|(φ ◦ f ◦ φ−1)′(0)| = |φ′(f(φ−1(0)))f ′(φ−1(0))(φ−1)′(0)|
= |φ′(i)f ′(i)(φ−1)′(0)|

= |φ′(i)f ′(i) 1

φ′(φ−1(0))
|

= |φ′(i)f ′(i) 1

φ′(i)
| = |f ′(i)|.

In the above lines we use the fact that |φ′(i)| 6= 0, for φ is an injective
holomorphic map. By Schwarz’s lemma, we have 1 ≥ |(φ ◦ f ◦ φ−1)′(0)| =
|f ′(i)|. If the equality holds, then φ ◦ f ◦ φ−1(z) = eiθz, and thus

f(z) = φ−1 ◦ eiθz ◦ φ(z)

= φ−1 ◦ eiθ i− z
i+ z

= i
1− eiθ i−z

i+z

1 + eiθ i−z
i+z

= i
i+ z − eiθ(i− z)

i+ z + eiθ(i− z)

= i
e−iθ/2(i+ z)− eiθ/2(i− z)

e−iθ/2(i+ z) + eiθ/2(i− z)

=
1

−i
· −2i sin(θ/2) · i+ 2 cos(θ/2)z

2 cos(θ/2) · i− 2i sin(θ/2)z

=
sin(θ/2) + cos(θ/2)z

cos(θ/2)− sin(θ/2)z
.

B-8

Define g(z) = f(z) when 0 ≤ Re z ≤ 1. Define g(z) = g(2− z) when
1 < Re z ≤ 2. We claim that g(z) is holomorphic on R1,2 := {z : 1 <
Re z < 2}. To see this, for any z0 ∈ R1,2, there is some ε > 0 so that
Bz0(ε) ⊂ R1,2. Since g(z) is holomorphic on R0,1 := {z : 0 < Re z < 1}, we
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have g(2− z) =
∑∞

n=0 an(2− z − (2− z0))n =
∑∞

n=0 an(−1)n(z−z0)n, which
proves the existence of power series at every neighborhood of z ∈ R1,2 and
hence our claim.

Since g(z) defined in this way is continuous on {z : 0 < Re z < 2} due to
the fact f(1 + ix) ∈ R for ever x ∈ R, and g(z) holomorphic on R0,1 ∪ R1,2,
by Morera’s theorem, g(z) is holomorphic on {z : 0 < Re z < 2} . Also, from
our definition of g, g(ix) = g(2 + ix) for every x ∈ R, for f(ix) ∈ R ∀x ∈ R.

Now for every 2n ≤ Re z ≤ 2n+2, n ∈ Z, we may define g(z) = g(z−2n).
It is straightforward that g is holomorphic on 2n < Re z < 2n + 2. In addi-
tion, it is continuous on {z : Re z = 2n, n ∈ Z}. By Morera’s theorem, g(z)
is holomorphic on C.

Since f and g coincide on R0,1, f ≡ g by the uniqueness theorem. As a
result, for any z ∈ C, f(z) = g(z) = g(z + 2) = f(z + 2).

B-9

For each z ∈ Ω, there is an ε-ball centered at z and its closure is contained
in Ω. Let C be its boundary. By Cauchy’s integral formula,

f(z) =
1

2πi

∫
C

f(ζ)

ζ − z
dζ

⇒f ′(z) =
1

2πi

∫
C

f(ζ)

(ζ − z)2
dζ,

for which the proof is omitted. Therefore, for ever f ∈ F , |f ′(z)| ≤ 1
2π
· M
ε2
·

2πε := Bz, where M is chosen that |f(w)| < M for all w ∈ Bz(ε).

B-10

Let CR = Reiθ, θ goes from 0 to π. By the residue theorem,
∫ R
−R

cos(x)
x2+4

dx+

i
∫ R
−R

sin(x)
x2+4

dx +
∫
CR

eiz

z2+4
dz = 2πiRes(f ; 2i) = 2πi · e−2

4i
= π

2
e−2. Since

|
∫
CR

eiz

z2+4
dz| ≤ πR · 1

R2+4
, let R→∞ we have

∫∞
−∞

cos(x)
x2+4

dx = π
2
e−2.
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