Real \& Complex Analysis Qualifying Exam Solution, Fall 2007

Shiu-Tang Li

January 1, 2013

A-1

Apply dominated convergence theorem with dominating function $|f|$ on every $h_{n} \rightarrow 0$ to prove $F\left(x+h_{n}\right) \rightarrow F(x)$. Arbitrariness of $\left\{h_{n}\right\}$ implies that F is continuous on x for every $x \in \mathbb{R}$.

A-2

We have $\|M g\|_{2}=\left(\int_{\mathbb{R}} f^{2} g^{2} d x\right)^{1 / 2} \leq\|f\|_{\infty}\left(\int_{\mathbb{R}} g^{2} d x\right)^{1 / 2}=\|f\|_{\infty}\|g\|_{L^{2}(\mathbb{R})}$.
To see $\|M\| \geq\|f\|_{\infty}$, consider $g_{\epsilon}=\operatorname{sgn}(f) \chi_{[-n, n]} \chi_{\left\{|f|>\|f\|_{\infty}-\epsilon\right\}}$, where $n=n_{\epsilon}$ is chosen s.t. $\mu\left(|f|>\|f\|_{\infty}-\epsilon, x \in[-n, n]\right)>0$.

Therefore, $\left\|M g_{\epsilon}\right\|_{2}^{2}=\int_{-n}^{n}|f|^{2} \chi_{\left\{|f|>\|f\|_{\infty}-\epsilon\right\}} d \mu \geq\left(\|f\|_{\infty}-\epsilon\right)^{2} \mu\left(|f|>\|f\|_{\infty}-\right.$ $\epsilon, x \in[-n, n])=\left\|g_{\epsilon}\right\|_{L^{2}}^{2}\left(\|f\|_{\infty}-\epsilon\right)^{2}$. Since ϵ is arbitrary, we have $\|M\| \geq$ $\|f\|_{\infty}$.

A-3

(a) Let $T v=\lambda v, v \neq 0$. Since $(T v, v)=\lambda(v, v)=(v, T v)=\bar{\lambda}(v, v)$ and $(v, v)>0, \lambda$ is real.
(b) Let $T u=\mu u, T v=\lambda v, \mu \neq \lambda$ and $u, v \neq 0$. We have $(T u, v)=$ $\mu(u, v)=(u, T v)=\lambda(u, v) . \mu \neq \lambda \Rightarrow(u, v)=0$.
(c) For each λ_{n}, we pick some $\left\|x_{n}\right\|=1$ so that $T x_{n}=\lambda_{n} x_{n}$. We claim that $X=\left\{\sum_{n=1}^{\infty} a_{n} x_{n}: \sum_{n=1}^{\infty}\left|a_{n}\right|^{2}<\infty\right\}$ is a closed subspace of H. For if
$y_{k}:=\sum_{n=1}^{\infty} a_{k n} x_{n}$ is Cauchy, $a_{k n} \rightarrow b_{n}$ as $k \rightarrow \infty$ for each $n \in \mathbb{N}$. Given $\epsilon>0$, we have $\left\|y_{m}-y_{n}\right\|<\epsilon$ for all $m, n>K$, and now we apply Fatou's lemma to get

$$
\begin{aligned}
\sum_{n=1}^{\infty}\left|b_{n}-a_{K n}\right|^{2} & \leq \liminf _{k \rightarrow \infty} \sum_{n=1}^{\infty}\left|a_{k n}-a_{K n}\right|^{2} \\
& =\liminf _{k \rightarrow \infty}\left\|y_{k}-y_{K}\right\| \leq \epsilon
\end{aligned}
$$

Besides, we may pick K large so that $\left(\sum_{n=1}^{\infty}\left|b_{n}\right|^{2}\right)^{1 / 2} \leq\left(\sum_{n=1}^{\infty} \mid b_{n}-\right.$ $\left.\left.a_{K n}\right|^{2}\right)^{1 / 2}+\left(\sum_{n=1}^{\infty}\left|a_{K n}\right|^{2}\right)^{1 / 2}<\infty$. That is, $\sum_{n=1}^{\infty} b_{n} x_{n} \in X$. That $y_{k} \rightarrow$ $\sum_{n=1}^{\infty} b_{n} x_{n}$ in X is equivalent to the fact that X is closed.

Since X is closed, we may decompose $H=X \oplus X^{\perp}$. We claim that $x_{n} \rightharpoonup 0$. First, for each $y \in H$ we may write it as $\sum_{m=1}^{\infty} a_{m} x_{m}+x^{\prime}$, where $\sum_{m=1}^{\infty} a_{m} x_{m} \in X$ and $x^{\prime} \in X^{\perp}$. We have

$$
\begin{aligned}
\left(x_{n}, y\right) & =\left(x_{n}, \sum_{m=1}^{\infty} a_{m} x_{m}+x^{\prime}\right)=\left(x_{n}, \sum_{m=1}^{\infty} a_{m} x_{m}\right) \\
& =\left(x_{n}, \sum_{m=1}^{n} a_{m} x_{m}\right)+\left(x_{n}, \sum_{m=n+1}^{\infty} a_{m} x_{m}\right) \\
& =a_{n}+\left(x_{n}, \sum_{m=n+1}^{\infty} a_{m} x_{m}\right) \rightarrow 0 \text { as } n \rightarrow \infty .
\end{aligned}
$$

The above convergence is due to $\sum_{m=1}^{\infty}\left|a_{m}\right|^{2}<\infty$. We have shown our claim.
Next, since $\left\{x_{n}\right\}_{n}$ is a bounded sequence, $\left\{T x_{n}\right\}_{n}$ is precompact in H. We claim that $T x_{n} \rightarrow 0$. If not, by precompactness of $\left\{T x_{n}\right\}_{n}$ we can find a subsequence $\left\{T x_{m_{k}}\right\}_{k}$ so that $T x_{m_{k}} \rightarrow z \neq 0 \Rightarrow T x_{m_{k}} \rightharpoonup z \neq 0$. However, $x_{n} \rightharpoonup 0$ implies $T x_{n} \rightharpoonup 0$ by that T is adjoint, which is a contradiction. Therefore,

$$
\begin{aligned}
T x_{n} \rightarrow 0 & \Rightarrow\left\|T x_{n}\right\| \rightarrow 0 \\
& \Rightarrow\left\|\lambda_{n} x_{n}\right\| \rightarrow 0 \\
& \Rightarrow\left\|\lambda_{n}\right\| \rightarrow 0 \\
& \Rightarrow \lambda_{n} \rightarrow 0 .
\end{aligned}
$$

And the proof is complete.

A-4

See the sol $A-4$ in spring 2008 real and complex analysis qualifying exam. (Or directly from Rudin's book.)

A-5

$$
\begin{aligned}
\|T g\|_{2} & =\left(\int_{0}^{1}(T g(x))^{2} d x\right)^{1 / 2} \leq\left(\int_{0}^{1}\left(\int_{0}^{1} K(x, y)^{2} d y\right)\left(\int_{0}^{1} f(y)^{2} d y\right) d x\right)^{1 / 2} \\
& =\|f\|_{L^{2}(I)} \int_{I} \int_{I} K(x, y)^{2} d y d x \\
& =\|f\|_{L^{2}(I)} \int_{I \times I} K(x, y)^{2} d(x \times y)
\end{aligned}
$$

where the last identity is due to Tonelli's theorem.

B-6

I would prove further that if $f(z) \leq A+B|z|^{n}$ for some $A \geq 0, B>0$ and for all $z \in \mathbb{C}$, then $f(z)$ is a polynomial of degree $\leq n$.
we first note that $g(z):=\frac{f(z)-f(0)}{z}$ for $z \neq 0$ and $g(0)=f^{\prime}(0)$ is also an entire function, for g is holomorphic on $\mathbb{C} \backslash\{0\}$ and is continuous on \mathbb{C}, thus we may prove holomorphicity of g on \mathbb{C} using Morera's theorem.

The proof is by induction. When $n=0$, this is Liouville's theorem. For $n=N>1$, assume that $f(z) \leq A+B|z|^{N}$, we have $|g(z)| \leq \frac{A+B|z|^{N}+|f(0)|}{|z|} \leq$ $A^{\prime}+B|z|^{N-1}$ when $|z|>1$, and $|g(z)| \leq A^{\prime \prime}+B|z|^{N-1}$ when $|z| \leq 1$ since $|g|$ is bounded on bounded domains. Therefore, by induction hypothesis, $g(z)$ is a polynomial of degree $\leq N-1$. Since $g(z) z+f(0)=f(z)$ for every $z \in \mathbb{C}$, f is a polynomial of degree $\leq N$, and this completes the proof.

B-7

(a) Let $\phi(z)=\frac{i-z}{i+z}$, which is analytic on H, and for $z=a+b i, b>0$, $|i-z|=|-a+(1-b) i|<|a+(1+b) i|=|i+z|$, which shows that $\phi: H \rightarrow D:=\{z:|z|<1\}$. To see $\phi(z)$ is onto and $1-1$, for any
$w=r e^{i \theta} \in D, r<1, w=\frac{i-z}{i+z} \Rightarrow z=i \frac{1-w}{1+w}=i \frac{1-r e^{i \theta}}{1+r e^{i \theta}}=i \frac{1-r^{2}-2 i \sin (\theta)}{1+r^{2}+2 r \cos (\theta)} \in H$. Thus, we may define the inverse map of ϕ by $\phi^{-1}(z)=i \frac{1-z}{1+z}: D \rightarrow H$. These facts show that ϕ is a conformal map from H to D, which takes i to 0 .
(b) Consider the holomorphic map $\phi \circ f \circ \phi^{-1}: D \rightarrow D$.

$$
\begin{aligned}
\left|\left(\phi \circ f \circ \phi^{-1}\right)^{\prime}(0)\right| & =\left|\phi^{\prime}\left(f\left(\phi^{-1}(0)\right)\right) f^{\prime}\left(\phi^{-1}(0)\right)\left(\phi^{-1}\right)^{\prime}(0)\right| \\
& =\left|\phi^{\prime}(i) f^{\prime}(i)\left(\phi^{-1}\right)^{\prime}(0)\right| \\
& =\left|\phi^{\prime}(i) f^{\prime}(i) \frac{1}{\phi^{\prime}\left(\phi^{-1}(0)\right)}\right| \\
& =\left|\phi^{\prime}(i) f^{\prime}(i) \frac{1}{\phi^{\prime}(i)}\right|=\left|f^{\prime}(i)\right| .
\end{aligned}
$$

In the above lines we use the fact that $\left|\phi^{\prime}(i)\right| \neq 0$, for ϕ is an injective holomorphic map. By Schwarz's lemma, we have $1 \geq\left|\left(\phi \circ f \circ \phi^{-1}\right)^{\prime}(0)\right|=$ $\left|f^{\prime}(i)\right|$. If the equality holds, then $\phi \circ f \circ \phi^{-1}(z)=e^{i \theta} z$, and thus

$$
\begin{aligned}
f(z) & =\phi^{-1} \circ e^{i \theta} z \circ \phi(z) \\
& =\phi^{-1} \circ e^{i \theta} \frac{i-z}{i+z} \\
& =i \frac{1-e^{i \theta} \frac{i-z}{i+z}}{1+e^{i \theta} \frac{i-z}{i+z}} \\
& =i \frac{i+z-e^{i \theta}(i-z)}{i+z+e^{i \theta}(i-z)} \\
& =i \frac{e^{-i \theta / 2}(i+z)-e^{i \theta / 2}(i-z)}{e^{-i \theta / 2}(i+z)+e^{i \theta / 2}(i-z)} \\
& =\frac{1}{-i} \cdot \frac{-2 i \sin (\theta / 2) \cdot i+2 \cos (\theta / 2) z}{2 \cos (\theta / 2) \cdot i-2 i \sin (\theta / 2) z} \\
& =\frac{\sin (\theta / 2)+\cos (\theta / 2) z}{\cos (\theta / 2)-\sin (\theta / 2) z} .
\end{aligned}
$$

B-8

Define $g(z)=f(z)$ when $0 \leq \operatorname{Re} z \leq 1$. Define $g(z)=\overline{g(2-\bar{z})}$ when $1<\operatorname{Re} z \leq 2$. We claim that $g(z)$ is holomorphic on $R_{1,2}:=\{z: 1<$ $R e z<2\}$. To see this, for any $z_{0} \in R_{1,2}$, there is some $\epsilon>0$ so that $B_{z_{0}}(\epsilon) \subset R_{1,2}$. Since $g(z)$ is holomorphic on $R_{0,1}:=\{z: 0<R e z<1\}$, we
have $\overline{g(2-\bar{z})}=\overline{\sum_{n=0}^{\infty} a_{n}\left(2-\bar{z}-\left(2-\overline{z_{0}}\right)\right)^{n}}=\sum_{n=0}^{\infty} \overline{a_{n}}(-1)^{n}\left(z-z_{0}\right)^{n}$, which proves the existence of power series at every neighborhood of $z \in R_{1,2}$ and hence our claim.

Since $g(z)$ defined in this way is continuous on $\{z: 0<\operatorname{Re} z<2\}$ due to the fact $f(1+i x) \in \mathbb{R}$ for ever $x \in \mathbb{R}$, and $g(z)$ holomorphic on $R_{0,1} \cup R_{1,2}$, by Morera's theorem, $g(z)$ is holomorphic on $\{z: 0<R e z<2\}$. Also, from our definition of $g, g(i x)=g(2+i x)$ for every $x \in \mathbb{R}$, for $f(i x) \in \mathbb{R} \forall x \in \mathbb{R}$.

Now for every $2 n \leq R e z \leq 2 n+2, n \in \mathbb{Z}$, we may define $g(z)=g(z-2 n)$. It is straightforward that g is holomorphic on $2 n<R e z<2 n+2$. In addition, it is continuous on $\{z: \operatorname{Re} z=2 n, n \in \mathbb{Z}\}$. By Morera's theorem, $g(z)$ is holomorphic on \mathbb{C}.

Since f and g coincide on $R_{0,1}, f \equiv g$ by the uniqueness theorem. As a result, for any $z \in \mathbb{C}, f(z)=g(z)=g(z+2)=f(z+2)$.

B-9

For each $z \in \Omega$, there is an ϵ-ball centered at z and its closure is contained in Ω. Let C be its boundary. By Cauchy's integral formula,

$$
\begin{aligned}
f(z) & =\frac{1}{2 \pi i} \int_{C} \frac{f(\zeta)}{\zeta-z} d \zeta \\
\Rightarrow f^{\prime}(z) & =\frac{1}{2 \pi i} \int_{C} \frac{f(\zeta)}{(\zeta-z)^{2}} d \zeta
\end{aligned}
$$

for which the proof is omitted. Therefore, for ever $f \in \mathcal{F},\left|f^{\prime}(z)\right| \leq \frac{1}{2 \pi} \cdot \frac{M}{\epsilon^{2}}$. $2 \pi \epsilon:=B_{z}$, where M is chosen that $|f(w)|<M$ for all $w \in \overline{B_{z}(\epsilon)}$.

B-10

Let $C_{R}=R e^{i \theta}, \theta$ goes from 0 to π. By the residue theorem, $\int_{-R}^{R} \frac{\cos (x)}{x^{2}+4} d x+$ $i \int_{-R}^{R} \frac{\sin (x)}{x^{2}+4} d x+\int_{C_{R}} \frac{e^{i z}}{z^{2}+4} d z=2 \pi i \operatorname{Res}(f ; 2 i)=2 \pi i \cdot \frac{e^{-2}}{4 i}=\frac{\pi}{2} e^{-2}$. Since $\left|\int_{C_{R}} \frac{e^{i z}}{z^{2}+4} d z\right| \leq \pi R \cdot \frac{1}{R^{2}+4}$, let $R \rightarrow \infty$ we have $\int_{-\infty}^{\infty} \frac{\cos (x)}{x^{2}+4} d x=\frac{\pi}{2} e^{-2}$.

