Math 4200-001 Week 7-8 concepts and homework 2.4 Due Friday October 16 at 11:59 p.m.

2.4 2, 3, 5, 7, 8, 12, 16, 17, 18. Hint: In problems 2, 5, 18 identify the contour integrals as expressing a certain function or one of its derivatives, at a point inside γ , via the Cauchy integral formulas for analytic functions and their derivatives.

w7.1 Prove the special case of the Cauchy integral formula that we discuss on Wednesday, in Monday's notes:

If γ is a counter-clockwise simple closed curve bounding a subdomain *B* in *A*, with z_0 inside γ , then the important special case of the Cauchy integral formula can be proven with contour replacement and a limiting argument, assuming *f* is C^1 in addition to being analytic:

$$f(z_0) = \frac{1}{2 \pi i} \int_{\gamma} \frac{f(z)}{z - z_0} dz.$$

w7.2 Prove the positive distance lemma, which we make much use of in proving various theorems: If $K \subseteq \mathbb{C}$ is compact, and if $K \subseteq O$, where O is open, then there exists an $\varepsilon > 0$ such that for each $z \in K$, $D(z; \varepsilon) \subseteq O$. (This is equivalent to Distance Lemma 1.4.21 in the text. See if you can find a proof without looking there first, but in any case write a proof in your own words.)