Math 4200-001
Fall 2020
Lectures

4200-1 home page
Professor Korevaar's home page
Department of Mathematics
College of Science
University of Utah


It is my goal to have lecture note outlines for each day posted by noon the day before. In case you have to miss class I will also post filled in versions after class. On CANVAS you can access recordings of our lecture meetings.

Week 1: August 24-28 Sections 1.1-1.3
    aug24 1.1-1.2 pre.pdf 1.1-1.2 introduction to algebra and geometry in the complex plane.     aug24 1.1-1.2 post.pdf after-class version.
    aug26 1.1-1.2 pre.pdf 1.1-1.2 solutions to polynomial equations     aug26 1.1-1.2 post.pdf after-class version.
    aug28 1.2-1.3 pre.pdf 1.2-1.3 intro to transformations of the complex plane     aug28 1.2-1.3 post.pdf after-class version.

Week 2: August 31 - September 4 Sections 1.3-1.5
    aug31 1.3 pre.pdf 1.3 basic complex transformations     aug31 1.3 post.pdf after-class version.
    sept2 1.5 pre.pdf 1.5 complex differentiability     sept2 1.5 post.pdf after-class version.
    sept4 1.5 pre.pdf 1.5 chain rules and rotation-dilation differential map     sept4 1.5 post.pdf after-class version.

Week 3: September 9-11 Section 1.5
    sept9 1.5 pre.pdf 1.5 3220 apps: differential map, CR theorem, inverse function theorem.     sept9 1.5 post.pdf after-class version.
    sept11 1.5-1.6 pre.pdf 1.5 harmonic functions and harmonic conjugates.     sept11 1.5 post.pdf after-class version.

Week 4: September 14-18 Sections 1.5-2.1
    sept14 1.5-1.6 pre.pdf 1.5-1.6: harmonic conjugates; basic analytic functions.     sept14 1.5-1.6 post.pdf after-class version.
    sept16 1.6 pre.pdf 1.6: compositions and inverses of analytic functions; fundamental domains.     sept16 1.6 post.pdf after-class version.
    sept18 1.6-2.1 pre.pdf 2.1 integrals over curves for complex-valued functions.     sept18 1.6-2.1 post.pdf after-class version.    

Week 5: September 21-25 Sections 2.1-2.2
    sept21 2.1-2.2 pre.pdf contour integrals and the FTC for analytic integrands.     sept21 2.1-2.2 post.pdf after-class version.
    sept23 2.2 pre.pdf Cauchy's Theorem and the Replacement Theorem for contour integrals of analytic functions.     sept23 2.2 post.pdf after-class version.    
    sept25 2.2 pre.pdf Path independence and antiderivatives     sept25 2.2 post.pdf after-class version.

Week 6: September 28 - October 2 Sections 2.2-2.3
    sept28 2.2-2.3 pre.pdf antiderivatives for C1 analytic functions in simply-connected domains     sept28 2.2-2.3 post.pdf after-class version.
    sept30 2.3 pre.pdf rectangle lemma and local antiderivatives for analytic functions.     sept30 2.3 post.pdf after-class version.
    oct2 2.3 pre.pdf homotopies, simply-connected, antiderivatives, deformation theorems     oct2 2.3 post.pdf after-class version.

Week 7: October 5-9 Section 2.4
    oct5 2.4 pre.pdf winding number and Cauchy Integral Formula     oct5 2.4 post.pdf after-class version.
    oct7 2.4 pre.pdf Cauchy integral formula for derivatives; exam review.     oct7 2.4 post.pdf after-class version.

Week 8: October 12-16 Section 2.4
    oct12 2.4 pre.pdf C.I.F. for derivatives, Liouville's Theorem, Fundamental Theorem of Algebra.     oct12 2.4 post.pdf after-class version.
    oct14 2.4 pre.pdf Fundamental Theorem of Algebra, Morera's Theorem and consequences, Zeta function.     oct14 2.4 post.pdf after-class version.
    oct16 2.5 pre.pdf mean value property and maximum principle for analytic and harmonic functions.     oct16 2.5 post.pdf after-class version.

Week 9: October 19-23 Sections 2.5-3.1
    oct19 2.5 pre.pdf maximum principles for analytic and harmonic functions; conformal diffeomorphisms of the unit disk.     oct19 2.5 post.pdf after-class version.
    oct21 2.5 pre.pdf Poisson integral formula for harmonic functions, via Mobius transformations.     oct21 2.5 post.pdf after-class version.
    oct23 3.1 pre.pdf sequences and series of analytic functions     oct23 3.1 post.pdf after-class version.

Week 10: October 26-30 Sections 3.2-3.3
    oct26 3.2 pre.pdf existence, uniqueness and convergence of power series for analytic functions.     oct26 3.2 post.pdf after-class version.    
    oct28 3.2 pre.pdf Taylor series tricks     oct28 3.2 post.pdf after-class version.
    oct30 3.3 pre.pdf Laurent series.     oct30 3.3 post.pdf after-class version.

Week 11: November 2-6 Sections 3.3-4.2
    nov2 3.3 pre.pdf Laurent series and classification of isolated singularities     nov2 3.3 post.pdf after-class version.
    nov4 3.3 pre.pdf Laurent series and classification of isolated singularities     nov4 3.3 post.pdf after-class version.
    nov6 4.1-4.2 pre.pdf Residue theorem and residue computation shortcuts     nov6 4.1-4.2 post.pdf after-class version.    

Week 12: November 9-13 Sections 4.2-4.3
    nov9 4.2 pre.pdf Residue Theorems and exam review notes     nov9 4.2 post.pdf after-class version.
    nov11 hwandreview pre.pdf homework and review questions     nov11 hwandreview post.pdf after-class version.    

Week 13: November 16-20 4.3-4.4
    nov16 4.3 pre.pdf integral applications of contour integration     nov16 4.3 post.pdf after-class version.
    nov18 4.3 pre.pdf continued     nov18 4.3 post.pdf after-class version.
    nov20 4.4 pre.pdf magic formulas for summing series.     nov20 4.4 post.pdf after-class version.

Week 14: November 23-25 5.1-5.2
    nov23 5.1-5.2 pre.pdf conformal transformations between domains     nov23 5.1-5.2 post.pdf after-class version.
    nov25 5.1-5.2 pre.pdf conformal transformations continued.     nov25 5.1-5.2 post.pdf after-class version.    

Week 15: November 30 - December 4 5.2 and presentations
    nov30 5.2 pre.pdf FLT examples; Riemann sphere revisited as a Riemann surface.     nov30 5.2 post.pdf after-class version. Also, Daniel presented about the meromorphic functions on complex tori.
    December 2: Jess, Carlie and Austin presented on the Prime Number Theorem and the Riemann Zeta function.
    December 4: finalereview.pdf Also, Aidan and Emma presented on the general Schwarz reflection principle, and on other analytic continuation ideas related to the Zeta function. finalereview post.pdf