Math 2280-001
Spring 2015
Lectures

2280-1 home page
Professor Korevaar's home page
Department of Mathematics
College of Science
University of Utah

Lecture notes will be posted at least a day before class, and it will be your responsibility to print out and bring a copy . Most people find it useful to have the notes handy so as to minimize copying directly from the blackboard, thus leaving time in class to work on and write down example details and key explanations. The .pdf versions of the notes are for printing out. They are created from the Maple worksheets having the .mw suffix.

Week 1: Jan 12-16
    jan12.pdf   jan12.mw   1.1-1.2 introduction to differential equations
    jan14.pdf   jan14.mw   1.1-1.2 1.4 separable differential equations, and ones of the form y'(x)=f(x).
    jan16.pdf   jan16.mw   1.3-1.4 slope fields, solution graphs, and existence-uniqueness for first order IVP's; examples using separable DE's.

Week 2: Jan 21-23
    jan21.pdf   jan21.mw   1.3-1.4 continued
    jan23.pdf   jan23.mw   1.5 linear differential equations

Week 3: Jan 26-30
    jan26.pdf   jan26.mw   2.1 improved population models
    jan28.pdf   jan28.mw   2.2 autonomous differential equations; phase diagrams for equilibrium stability analysis
    jan30.pdf   jan30.mw   2.2-2.3 phase diagram analysis for applications; begin improved velocity models section.

Week 4: Feb 2-6
    feb2.pdf   feb2.mw   2.3 improved velocity models
    feb4.pdf   feb4.mw   2.4-2.6 numerical methods. Class will meet in the computer classroom LCB 115.
    feb6.pdf   feb6.mw   3.1 introduction to higher order linear differential equations

Week 5: Feb 9-13
    feb9.pdf   feb9.mw   3.2 nth order linear differential equations
    feb11.pdf   feb11.mw   3.2-3.3 linear independence tests; algorithm for solutions space bases, for constant coefficient homogeneous linear differential equations.
    feb13.pdf   feb13.mw   3.3-3.4 complex roots in the characteristic polynomial; applications to mechanical oscillations.

Week 6: Feb 18-20
    feb18.pdf   feb18.mw   review notes for exam; we will spend the first part of class finishing last Friday's notes, and then review.
    exam 1 on February 20

Week 7: Feb 23-27
    feb23.pdf   feb23.mw   3.5 finding particular solutions to L(y)=f.
    feb25.pdf   feb25.mw   3.4, 3.5, 3.6 pendulum and mass-spring experiment day; overview of 3.6
    feb27.pdf   feb27.mw   3.6 forced oscillations

Week 8: Mar 2-6
    mar2.pdf   mar2.mw   3.7 RLC circuits
    mar4.pdf   mar4.mw   4.1 systems of differential equations
    mar6.pdf   mar6.mw   5.1-5.2 systems of linear differential equations

Week 9: Mar 9-13
    mar9.pdf   mar9.mw   5.1-5.2 continued - complex eigenvalues and applications
    March 11: finish Monday's notes and discussion!
    mar13.pdf   mar13.mw   5.3 phase portraits for homogeneous linear first order systems of two differential equations.

Week 10: Mar 23-27
    mar23.pdf   mar23.mw   5.4 unforced mass-spring systems
    mar25.pdf   mar25.mw   5.4 forced oscillations in mass-spring systems
    mar27.pdf   mar27.mw   5.5 solving linear systems x'=Ax when the matrix A is not diagonalizable.

Week 11: Mar 30 - Apr 3
    mar30.pdf   mar30.mw   5.5 continued
    exam2review.pdf   exam2review.mw   review sheet for exam 2

Week 12: Apr 6-10
    apr6.pdf   apr6.mw   5.6 matrix exponentials
    apr8.pdf   apr8.mw   5.6-5.7 matrix exponentials and variation of parameters for inhomogeneous systems
    apr10.pdf   apr10.mw   7.1-7.2 Laplace transforms and initial value problems

Week 13: Apr 13-17
    apr13.pdf   apr13.mw   7.1-7.4 Laplace transforms and applications
    apr15.pdf   apr15.mw   7.3-7.5 Laplace transforms and applications
    apr17.pdf   apr17.mw   7.5-7.6 applications of convolution to forced oscillation problems

Week 14: Apr 20-24
    apr20.pdf   apr20.mw   9.1-9.2 Introduction to Fourier Series
    apr22.pdf   apr22.mw   9.1-9.3 Fourier Series
    apr24.pdf   apr24.mw   9.4 Understanding general periodic forced oscillation problems - via superposition and Fourier series for the forcing function.

Week 15: Apr 27
    Math_2280_review.pdf  
    apr29.pdf   apr29.mw   free bonus day! - optional survey of 6.1-6.4. The new material is not on the final exam but does tie together several of the course themes: linearization in non-linear problems; linear systems of differential equations; phase diagrams for homogeneous linear systems via eigendata analysis. I've reserved LCB 225, at the other end of the hall from our usual classroom, for this Wednesday meeting, at the usual class time.