Math 2280-1
Introduction to
Differential Equations
Spring term, 2006

Class Notes

Send e-mail to : Professor Korevaar


Links:
Math 2280-1 home page
Professor Korevaar's home page
Department of Mathematics




Lectures are listed in reverse chronological order.
Week 15

apr26.pdf        final review sheet and practice exam
apr25.pdf        9.6   modeling slinky waves
apr24.pdf        9.6   waves!

Week 14
apr21.pdf        9.5   the one-space dimension heat equation examples
apr19.pdf        9.5   the one-space dimension heat equation
apr18.pdf        9.4   resonance revisited - the complete answer via Fourier series
apr17.pdf        9.3   differentiating and integrating Fourier series term by term

Week 13
apr14.pdf        9.1-9.2 Fourier series for 2L-periodic functions
apr12.pdf        9.1-9.2 Fourier series for 2*Pi periodic functions
apr11.pdf        7.4-7.5 convolution, translation, and applications
apr10.pdf        7.3-7.4 More Laplace

Week 12
apr5.pdf        7.1-7.3 Laplace transform
apr3.pdf        7.1-7.2 Laplace transform

Week 11
mar31.pdf        7.1-7.2 Laplace transform; also on page 3 is exam 2 review
mar29.pdf        6.4 mechanical models
mar28.pdf        6.3 ecology models continued
mar27.pdf        6.3 ecological models

Week 10
mar24.pdf        6.2 stability and classification of equilibrium points for liner and non-linear systems of DE's
mar22.pdf        6.1-6.2 equilibria and stability
mar21.pdf        6.1 autonomous non-linear systems of DE's
mar20.pdf        5.6 non-homogeneous linear first order systems
march20maple.mws        helpful code for solving non-homogeneous systems using variation of parameters

Week 9
mar10.pdf      5.5 continued
mar8.pdf        5.5 fundamental solution matrices and matrix exponentials
mar7.pdf        5.4 defective eigenvalues
mar6maple.pdf     5.3 Spring systems done on Maple
march6experiment.pdf     5.3 two mass, three spring experiment and model

Week 8
mar3.pdf        5.3 spring systems
mar1maple.pdf    5.2 applications with real and complex eigenvalues; maple helped.
mar1maple.mws
feb28.pdf       5.1-5.2 eigenvalue-eigenvector method for lin. const. coeff. homog. sys. of 1st order DE's
feb27.pdf       4.1-4.3   first order systems of DE's and numerical approximation
numerical2.mws    4.3   numerical methods for first order systems of DE's - Maple worksheet for 2/27 class notes

Week 7
feb24.pdf      4.1   geometric interpretation of first order systems of DE's and why we expect existence and uniqueness for IVP's.
feb22.pdf      4.1   introduction to systems of differential equations
feb21.pdf      3.6   forced oscillations with damping: steady periodic and transitory pieces of the solution

Week 6
feb17.pdf      3.6   Forced oscillations without damping
feb14.pdf      3.5   variations of parameters ALWAYS works to find a particular solution!
feb13.pdf      3.5   finding particular solutions with linear algebra ("method of undetermined coefficients")

Week 5
feb10.pdf      3.4   mass-spring/pendulum experiment day!!
feb8.pdf        3.4   damped harmonic oscillator
feb7.pdf        3.4   the simple harmonic oscillator
feb6.pdf        3.3   repeated and complex roots for solutions to homogeneous constant coefficient linear DE's

Week 4
feb3.pdf        3.3   linear homogeneous DE's with constant coefficient functions
feb1.pdf        3.1-3.2   introduction continued
jan31.pdf       3.1-3.2   introduction to nth order linear DE's
jan30.pdf       2.2-2.4   discussion of numerical methods for solving DE IVP's.

Week 3
jan27.pdf      2.3   velocity acceleration models
numerical1.pdf    handout for numerical methods, sections 2.4-2.6
numerical1.mws    maple worksheet
jan24.pdf      2.2-2.3   doomsday-exitinction, harvesting logistic equations, and start %2.3.
jan23.pdf      2.1-2.2   equilibrium solutions and stability

Week 2
jan20.pdf      2.1   the logistic model of population growth
     jan20maple.pdf      modeling U.S. population with the logistic model
     jan20maple.mws      Maple worksheet
jan18.pdf      1.5   applications for first order DE's: mixing problems, and a generalized Newton's cooling law.
     jan18maple.pdf        computations pictures for the Newton cooling example
     jan18maple.mws        Maple worksheet
jan17.pdf      1.4-1.5   Torricelli experiment. Introduction to first order linear DE's.

Week 1
jan13.pdf      1.4   two applications of separable DE's
     jan13maple.pdf      1.4   maple handout about separable DE's
     jan13maple.mws      1.4   maple worksheet - open URL from maple, and play.
jan11.pdf      1.3-1.4   existence and uniqueness of IVP solutions, and examples using separable equations.
     jan11maple.pdf      Maple handout included in class notes
     jan11maple.mws    Maple worksheet of handout, can be opened from Maple
jan10.pdf      1.2-1.3   the easiest 1st order DE's are solved by antidifferentiation!
     Also, slope field interpretation for general 1st order DE solution graphs.
jan9.pdf        1.1   introduction to differential equations