\qquad

Student I.D.

Math 2250-1

Quiz 10

November 16, 2012

Directions: Because the homework was split evenly between Laplace transforms and eigenvectors this week, you may choose either problem 1 or problem 2 below to complete. If you attempt both, make it very clear which one you want graded.

1) Consider the matrix

$$
A:=\left[\begin{array}{rr}
4 & 9 \\
-4 & -8
\end{array}\right]
$$

a) Find the eigenvalues and eigenvectors (eigenspace bases).
b) Is this matrix diagonalizable? Explain why or why not.
a) The characteristic polynomial is

$$
\left|\begin{array}{cc}
4-\lambda & 9 \\
-4 & -8-\lambda
\end{array}\right|=(4-\lambda)(-8-\lambda)+36=\lambda^{2}+4 \lambda+4=(\lambda+2)^{2} .
$$

Thus $\lambda=-2$ is a double root, and the only eigenvalue. We find an eigenbasis for $E_{\lambda=-2}$ by reducing the system

$$
\left[\begin{array}{cc|c}
6 & 9 & 0 \\
-4 & -6 & 0
\end{array}\right] \rightarrow\left[\begin{array}{ll|l}
2 & 3 & 0 \\
0 & 0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{cc|c}
1 & \frac{3}{2} & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Method 1: We can backsolve for $\left[v_{1}, v_{2}\right]$, yielding $v_{2}=t, v_{1}=-\frac{3}{2} t \mathrm{so}$

$$
\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=t\left[\begin{array}{c}
-\frac{3}{2} \\
1
\end{array}\right]
$$

So we may take a basis for this one-dimensional eigenspace by letting $t=2$ (to clear fractions), i.e. the eigenvector

$$
\underline{\boldsymbol{v}}=\left[\begin{array}{c}
-3 \\
2
\end{array}\right] .
$$

Method 2: Since homogeneous solutions to matrix equations correspond to column dependencies, we see from the first reduction that $-3 \mathrm{col}_{1}+2 \mathrm{col}_{2}$ holds for the original (and reduced) matrices, so $\underline{\boldsymbol{v}}=[-3,2]^{T}$ is an eigenvector. Since the solution space is one-dimensional (one column without a leading 1, so one free parameter), this eigenvector is a basis for $E_{\lambda=-2}$.
b) No, this matrix is not diagonalizable. There are not two linearly independent eigenvectors, i.e. there is not a basis for \mathbb{R}^{2} consisting of eigenvectors of A.
2) Solve the initial value problem below for an undamped mass-spring configuration subject to impulse forces at time $t=\pi$ and $t=3 \pi$. (There is a Laplace transform table on the back of this quiz.)

$$
\begin{gathered}
x^{\prime \prime}(t)+4 x(t)=3 \cdot \delta(t-\pi)-2 \cdot \delta(t-3 \pi) \\
x(0)=0 \\
x^{\prime}(0)=0 .
\end{gathered}
$$

Hint: The solution has this graph:

(10 points)
Solution: Taking Laplace transform for the IVP yields

$$
\begin{gathered}
s^{2} X(s)+4 X(s)=3 e^{-\pi s}-2 e^{-3 \pi s} \\
X(s)\left(s^{2}+4\right)=3 e^{-\pi s}-2 e^{-3 \pi s} \\
X(s)=\frac{3 e^{-\pi s}}{s^{2}+4}-\frac{2 e^{-3 \pi s}}{s^{2}+4}
\end{gathered}
$$

So using the t-translation entry

$$
x(t)=3 u(t-\pi)\left(\frac{1}{2} \sin (2(t-\pi))\right)-u(t-3 \pi) \sin (2(t-3 \pi)) .
$$

Simplifying, and noticing that the translations in t are by multiples of the period of $\sin (2 t)$ we get

$$
x(t)=u(t-\pi)\left(\frac{3}{2} \sin (2 t)\right)-u(t-3 \pi) \sin (2 t)
$$

We can also express this function using the "piecewise" notation:

$$
x(t)=\left\{\begin{array}{c}
0, \quad 0 \leq t<\pi \\
\frac{3}{2} \sin (2 t), \quad \pi \leq t<3 \pi \\
\frac{1}{2} \sin (2 t) . \quad t \geq 3 \pi
\end{array}\right.
$$

Note: As one of you astutely pointed out after the quiz was handed in, the vertical axis in the suggestive "hint" graph was incorrectly scaled by a factor of 2 .

