Math 2250-3
Numerical Computations
Wednesday Sept 15, 2004

Homework for Wednesday Sept 22:

24: 5

25 5,25

26: 5

31 1,411, 16. 17,19, 23, 29, 32, 33, 34
3.2: 7,8.9 13,17, 29, 30

In this handout we will study numerical methods for approximating solutions to first order differential
equations. (Thefact is, most differential equations do NOT have simple formulas for their solutions,
despite al the examples you' ve seen in which they do. In the case that no nice formula exists for the
solution one must approximate it numerically.) A month from now we will see how higher order
differential equations can be converted into first order systems of differential equations, and that thereis
anatural way to generalize what we are doing now in the context of asingle first order differential
equation to this more complicated setting. So understanding today’ s material will be an important step
in understanding numerical solutionsto higher order differential equations and to systems of differential
equations.

We will be working through selected material from sections 2.4-2.6 of the text.

The most basic method of approximating solutionsto differential equationsis called Euler’ s method,
after the 1700’ s mathematician who first formulated it. 1f you want to approximate the solution to the
initial value problem dy/dx = f(x,y), y(x0)=yO, first pick astep size**h’’. Then for x between x0 and
x0+h, use the constant slope f(x0,y0). At x-value x1:=x0+h your y-value will therefore be y1:=y0 +
f(x0,yO)h. Then for x between x1 and x1+h you use the constant slope f(x1,y1), so that at x2:=x1+h
your y-valueisy2:=y1+f(x1,y1)h. You continuein this manner. Itiseasy to visuaizeif you understand
the slope field concept we' ve been talking about; you just use the slope field where you are at the end of
each step to get aslope for the next step. It is straightforward to have a programmable calcul ator or
computer software do this sort of tedious computation for you. In Euler’stime such computations would
have been done by hand!

A good first example to illustrate Euler’s method is our favorite DE from the time of Calculus,
namely dy/dx =y, say withinitial value y(0)=1, so that y=exp(x) isthe solution. Let’stake h=0.2 and try
to approximate the solution of the x-interval [0,1]. Since the approximate solution will be piecewise
affine, we only need to know the approximations at the discrete x values x=0,0.2,0.4,0.6,0.8,1. Here'sa
simple ‘*do loop’’ to make these computations.

[> restart: #clear any nenory fromearlier work
> x0:=0.0; xn:=1.0; y0:=1.0; n:=5; h:=(xn-x0)/n;
#specify initial values, nunber of steps, and size

{> f:=(x,y)->y; #this is the slope function f(x,y)
#in dy/dx = f(x,y), in our exanple dy/dx =y.
[> x:=x0; vy:=y0; #initialize x,y for the do | oop

r>for i from1l1l to n do

k:=f(x,y): #current slope, use : to suppress out put
y:=vy + h*k: #newy value via Euler
X:= x + h: #updat ed x-val ue:

print(x,y,exp(x)); #display current val ues,
#and conpare to exact solution
od: # ‘od’’ ends a do |oop

0.2000000000, 1.200000000, 1.221402758
0.4000000000, 1.440000000, 1.491824698
0.6000000000, 1.728000000, 1.822118800
0.8000000000, 2.073600000, 2.225540928

1.000000000, 2.488320000, 2.718281828
Notice your approximations are all alittle too small, in particular your final approximation 2.488...
short of the exact value of exp(1)=e=2.71828.. The reason for thisisthat because of the form of our
f(x,y) our approximate slope is always less than the actual slope. We can see this graphically using
lots:
€> with(plots):with(linalg):
[> xval : =vector (n+1);yval : =vector(n+l1l); #to collect all our points
> xval [1]: =x0; yval [1]:=y0; #initial val ues
r> #paste in the previous work, and nodify for plotting:
for i from1l1lto n do

x:=xval [i]: #current X

y'—yval[l] #current y

f(x,y): #current slope

yval[|+1] =y + h*k: #new y val ue via Eul er
xval [1+1]:= x + h: #updat ed x-val ue:
L od: # ‘od’ ' ends a do |oop
C > approxsol :=pointplot({seq([xval[i],yval[i]], i=1..n+1)}):

> exactsol : =plot (exp(t),t=0..1, color’=" black")
#used t because x was al ready used above
> di spl ay({appr oxsol , exactsol });

261
2.4
2.2
18
16
14

1.2

1;

If you connect the Euler dots in your mind, the picture above is like the one in figure 2.4.3, on page 112
of thetext. The upper graph is of the exponential function, the lower graph is of your Euler
approximation. The reason that the dots lie below the true graph is that asy increases the slope f(x,y)=y
should also be increasing, but in the Euler approximation you use the slope at each (lower) point to get
to the next (higher) point.

It should be that as your step size*‘h’’ gets smaller, your approximations get better to the actual
solution. Thisistrueif your computer can do exact math (which it can’t), but in practice you don’t want
to make the computer do too many computations because of problems with round-off error and
computation time, so for example, choosing h=0.0000001 would not be practical. But, trying h=0.01
should be instructive:

Since the width of our x-interval is 1, we stepsize h=0.01 by taking an n-value of subintervalsto
bel00. We keep the other datathe same asin our first example. The following code only prints out
approximations when h isamultiple of 0.1:

[> x0:=0.0; xn:=1.0; y0:=1.0; n:=100; h:=(xn-x0)/n;
[> fr=(x,y)->y;

[> x:=x0; y:=y0,

r>for i froml to n do

f(x,y): #current slope

y + h*k: #new y val ue via Euler

X

r

+ h: #updat ed x-val ue:

ac(i/10)=0
then print(x,y,exp(x));
fi; #use the ‘""if’’ test to decide when to print;
#the command ‘‘frac’’ conputes the remai nder
#of a quotient, it will be zero for us if i
#is a multiple of 10.

k
y
X
if f

od:
0.1000000000, 1.104622126, 1.105170918
0.2000000000, 1.220190040, 1.221402758
0.3000000000, 1.347848915, 1.349858808
0.4000000000, 1.488863734, 1.491824698
0.5000000000, 1.644631822, 1.648721271
0.6000000000, 1.816696698, 1.822118800
0.7000000000, 2.006763369, 2.013752707
0.8000000000, 2.216715219, 2.225540928
0.9000000000, 2.448632677, 2.459603111
1.000000000, 2.704813833, 2.718281828

We can also see this graphically:
> xval : =vect or (n+1) ; yval : =vector(n+l); #to collect al
L #our points
> xval [1]: =x0; yval[1]: =yO0; #initial values
r> #paste in the previous work, and nodify for plotting:
for i from1l1lto n do
x:=xval [i]: #current X
y:=yval[i]: #current y
k:= f(x,y): #current slope

yval [i+1]: =y + h*k: #new y val ue via Eul er
xval [1+1]:= x + h: #updat ed x-val ue:
L od: # 'od’’ ends a do |oop
C > approxsol :=pointplot({seq([xval[i],yval[i]], i=1..n+1)}):

> exactsol : =pl ot (exp(t),t=0..1, ‘color®=" black’):
#used t because x was already used above
> di spl ay({approxsol, exactsol });

2.6
2.4

2.2

1.8 1
1.6 1
1.4

1.2

Actually, considering how many computations you did with n=100 you are not so close to the exact
solution. In more complicated problems it isavery seriousissueto find relatively efficient ways of
approximating solutions. An entire field of mathematics, ‘‘ numerical analysis’ deals with such issues
for avariety of mathematical problems. The book talks about some improvements to Euler in sections
25and 2.6. If you are interested in thisimportant field of mathematics you should read 2.5 and 2.6
carefully. Let’s summarize some highlights below.

For any time step h the fundamental theorem of cal culus asserts that, since dy/dx = f(x,y(X)

x+h

dy
y(x+h)=y(x)+ ot dt

X
x+h

y(x+h)=y(x) + ? f(t, y(t)) dt

L X

The problem with Euler is that we always approximated thisintegral by h*f(x,y(x)), i.e. we used the
left-hand endpoint as our approximation of the *‘average height’’. The improvementsto Euler depend
on better approximationsto that integral. ‘‘Improved Euler’’ uses an approximation to the Trapezoid
Rule to approximate the integral. The trapezoid rule for the integral approximation would be

(1/2)* h* (f(x,y () ((x+h),y(x+h)). Since we don’t know y(x+h) we approximate it using unimproved
Euler, and then feed that into the trapezoid rule. Thisleads to the improved Euler do loop below. Of
course before you use it you must make sure you initialize everything correctly. We' [l compare it when
n=5, to our first (unimproved) attempt.

[>restart:
> x0:=0; yO0:=1;xn:=1.0; n: =5

h: =(xn-x0)/ n;
X:=x0; y:=y0;
L Fr=(xy)->y;
r>for i froml to n do
kl:=f(x,y): #1 eft - hand sl ope
k2: =f (x+h, y+h*k1): #approxi mation to right-hand sl ope
k: = (k1+k2)/ 2: #approxi mati on to average sl ope
y: = y+h*k: #i nproved Eul er update
X: = X+h: #updat e x
print(x,y,exp(x));
od:

0.2000000000, 1.220000000, 1.221402758
0.4000000000, 1.488400000, 1.491824698
0.6000000000, 1.815848000, 1.822118800
0.8000000000, 2.215334560, 2.225540928

L 1.000000000, 2.702708163, 2.718281828
Notice we almost did as well with improved Euler when n=5 as we did with n=100 in unimproved Euler.

One can aso use Taylor approximation methods to improve upon Euler; by differentiating the
eguation dy/dx = f(x,y) one can solve for higher order derivatives of y in terms of the lower order ones,
and then use the Taylor approximation for y(x+h) in terms of y(x). See the book for more details of this
method, we won't do it here.

In the samevein as‘‘improved Euler’” we can use the Simpson approximation for the integral instead
of the Trapezoid one, and this leads to the Runge-K utta method which iswidely used in real software.

(You may or may not have talked about Simpson’s Rule in Calculus, it is based on a quadratic
approximation to the function f, whereas the Trapezoid rule is based on afirst order approximation.)
Here isthe code for the Runge-Kutta method. The text explainsit in section 2.6. Simpson’srule
approximates an integral in terms of the integrand values at each endpoint and at the interval midpoint.
Runge-Kutta uses two different approximations for the midpoint value.

> x:=x0; y:=y0; n:=5; h:=(xn-x0)/n;

L fi:(_X,Y)->Y:
>for i froml1l to n do
k1l:=f(x,y): #l ef t - hand sl ope

k2: =f (x+h/ 2, y+h*k1/ 2): #1st guess at m dpoi nt sl ope
k3: =f (x+h/ 2, y+h*k2/ 2): #second guess at mi dpoi nt sl ope

k4: =f (x+h, y+h*k3): #guess at right-hand sl ope

k: =(k1+2*k2+2*k3+k4)/ 6: #Si npson’s approxi mation for the
i nt egral

X: =X+h: #X updat e

y: =y+h*Kk: #y update

print(x,y,exp(x)); #di spl ay current val ues

od:
0.2000000000, 1.221400000, 1.221402758
0.4000000000, 1.491817960, 1.491824698
0.6000000000, 1.822106456, 1.822118800
0.8000000000, 2.225520825, 2.225540928

L 1.000000000, 2.718251136, 2.718281828
Notice how close Runge-K utta gets you to the correct value of e, with n=5.

Even with code like Runge-K utta there are subtleties and problems which particular problems will cause.
We will not go into those here; there are good examples in sections 2.4-2.6 and the homework problems.

