Math 1210-001 Monday Feb 22 WEB L112

2.9 Differentials and tangent line approximation

• First - questions about related rates problems and implicit differentiation? WebWork is due this afternoon at 5:00 p.m., and you also have your lab work due Thursday.

• Then begin 2.9

Recall, if f(x) is a function and y = f(x) is its graph, then

$$f'(x)$$
 and $\frac{dy}{dx}$

are two of our notations for the derivative of f at the point x. If we write

$$f'(x) = \frac{dy}{dx}$$

and think of $\frac{dy}{dx}$ as a quotient, with numerator dy and denominator dx, this motivates the definition

$$dy := f'(x) dx$$

"dy", "dx" are called <u>differentials</u>.

Exercise 1) <u>1a</u>) If $y = \sqrt{x^2 + 3x}$ express dy in terms of x and dx.

<u>1b</u>) If $A = \pi r^2$ express dA in terms of r and dr.

<u>1c</u>) If $V = \frac{\pi}{12}h^3$ express dV in terms of h and dh.

What good are differentials?

<u>Answer:</u> In sections 3.8, 4.4 we will see how differentials guide us in using the chain rule in reverse, for the processes of <u>antidifferentiation</u> and <u>integration</u>.

In the current section we see how differentials can be used for approximation and error analysis.

Here is a diagram which explains how differentials allow one to approximate function values $f(x + \Delta x)$ in terms of f(x), f'(x), Δx . This "differential approximation" is also called "tangent line approximation."

In the figure below, we fix "x" and think of " Δx " as varying.

- "x" is fixed. Consider varying small deviations " Δx " for the input variable.
- $\Delta y = f(x + \Delta x) f(x)$ is the corresponding change in the output variable, i.e.

$$f(x + \Delta x) = f(x) + \Delta y.$$

• Set
$$dx = \Delta x$$
, $dy = f'(x) dx$.

Then *dy* is an approximation to the exact change Δy , that we get by using the tangent line at (x, f(x)) to approximate the actual graph of *f* (for small input deviations).

$$f(x+dx) \approx f(x) + dy.$$

Exercise 2) Consider $y = \sqrt{x}$. Use differentials and approximate 2a) $\sqrt{4.2}$ (x = 4, dx = 0.2)

(the decimal value is $\sqrt{4.2} = 2.04939...$)

<u>2b</u>) $\sqrt{8.7}$

(the decimal value is $\sqrt{8.7} = 2.949576...$)

Exercise 3) Use differentials to estimate the volume of paint necessary to paint a hemisphere of radius 5 feet, with a layer of paint 0.05 inches thick. Express your answer in gallons. (Hint: $1 ft^3 = 12^3 in^3$; 7.481 gal = $1 ft^3$.) Compare your estimate to the exact value.

Exercise 4) The side lengths of a cube are measured to be $10 \ cm \pm 0.1 \ cm$. Use differentials to estimate how close the volume is to $10^3 \ cm^3$. Compare to exact error estimate.