Math 1210-3
Calculus I
Spring term, 2008

Lectures

Links:
1210-3 home page
Professor Korevaar's home page
Department of Mathematics




Week 1: Jan 7-11
    jan7.pdf   P.1: lines
    jan8.pdf   P.2: slopes of graphs
    jan9.pdf   P.2-P.3: slopes and derivatives for polynomial functions.
    jan11.pdf   P.3: Derivatives of polynomials

Week 2: Jan 14-18
    jan14.pdf   P.3-P.4: position->velocity interpretation of derivatives; antidifferentiation
    jan15.pdf   P.4-P.5: antidifferentiation and intro to FTC
    jan16.pdf   P.5: the amazing FTC
    jan18.pdf   0.4: graphs of equations, scaling and translation.

Week 3: Jan 22-25
    jan22.pdf   0.4 continued - symmetry, intercepts, intersections.
    jan23.pdf   0.5-0.6 functions, graphs of functions, operations on functions.
    jan25.pdf   0.7 trigonometry review

Week 4: Jan 28 - Feb 1
    jan28.pdf   1.1 reintroduction to limits
    jan29.pdf   1.2 estimation, and using the precise definition of limit
    jan30.pdf   1.3 limit theorems; exam 1 review sheet for Friday.

Week 5: Feb 4-8
    feb4.pdf   1.4 limits for trig functions
    feb5.pdf   1.6 one-sided limits and continuity
    feb6.pdf   2.1 the definition of derivative, revisited, and why rates of change are important to everyone.
    feb8.pdf   2.2-2.3 differentiability and the sum, product, quotient rules for derivatives.

Week 6: Feb 11-15
    feb11.pdf   2.4-2.5 derivatives of trig functions and introduction to chain rule.
    feb12.pdf   2.5 chain rule.
    feb13.pdf   2.5-2.6 chain rule, and higher order derivatives.
    feb15.pdf   2.7 implicit differentiation

Week 7: Feb 19-22
    feb19.pdf   2.8 related rates, with geometry review included.
    feb20.pdf   2.8 related rates, four examples to work in class.
    No fresh notes for Friday February 22 - we'll work the examples from Wednesday's notes.

Week 8: Feb 25-29
    feb25.pdf   2.9 differentials and approximation
    feb26.pdf   3.1; intro to 3.2-3.5; max-min problems; and using Calculus to understand the geometry of function graphs.
    feb27.pdf   review sheet for exam 2

Week 9: Mar 4-8
    mar3.pdf   3.1-3.3 extrema, local extrema, increasing, decreasing, CU,CD.
    mar4.pdf   3.1-3.3, 3.5 extrema, local extrema, increasing, decreasing, CU,CD, and using this information to graph.
    mar5.pdf   3.4 max-min problems
    mar7.pdf   3.4 more scientific max-min problems

Week 10: Mar 10-14
    mar10.pdf   3.5, 1.5 graphing functions with Calculus, when infinity plays a role.
    March 11:   Use Monday's notes! (Since we spent Monday doing scientific max/min problems.)
    mar12.pdf   3.6 the Mean Value Theorem about average rates of change
    mar14.pdf   3.7 solving equations with Newton's and bisection methods.

Week 11: Mar 24-28
    mar24.pdf   3.8 antiderivatives
    mar25.pdf   3.8-3.9 antiderivatives and differential equations
    mar26.pdf   3.9, 4.1 differential equations; re-introduction to the definite integral.
    mar28.pdf   4.1-4.2 The definite integral.

Week 12: Mar 31 - Apr 4
    mar31.pdf   4.1-4.2 The definite integral
    apr1.pdf     4.3-4.4 The fundamental theorem(s) of Calculus
    apr2.pdf     odds and ends, and exam 3 review sheet.

Week 13: Apr 7 - Apr 11
    apr7.pdf   4.5 mean value theorem for integrals. also, why FTC1 and FTC2 are true.
    apr8.pdf   4.5 mean value theorem for integrals, and symmetry short-cuts for definite integrals.
    apr9.pdf   4.6 numerical integration
    apr11.pdf   5.1 areas of regions

Week 14: Apr 14 - Apr 18
    apr14.pdf   5.2 Volumes by slicing
    apr15.pdf   5.3 Volumes by cylindrical shells
    apr16.pdf   5.4 Lengths of curves
    apr18.pdf   5.4 Lengths of curves and areas of revolution

Week 15: Apr 21 - Apr 23
    apr21.pdf   5.5 Work
    apr22.pdf   5.6 Moments and centers of mass
    apr23.pdf   Topics review list