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• Before cells divide their chromosomes are duplicated and

then moved to the center (midline) of the dividing cell.

• Once they are all centered, they are separated into two

equal sets, enabling cell division.

• Question: How are chromosomes moved?
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Chromosome/microtubule

interactions

Chromosomes are connected to

microtubules (MT) at the KINETO-

CHORES where kinetochore struc-

tural complexes (such as Ndc80)

bind the MT lattice.
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Chromosome/microtubule

interactions

Microtubules change their length by

polymerizing and depolymerizing at

their tip.

DYNAMIC INSTABILITY describes

the process by which microtubules

switch between polymerizing and

depolymerizing states.

Chromosome velocities are re-

lated to the MT polymeriza-

tion/depolymerization rates.

Question: How can depolymerization/polymerization affect chro-

mosomal movement?
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Ndc80 Complex

Question: How can depolymerizing microtubules pull the

chromosomes?

Remark: It is known to not be due to walking molecular motors

(i.e., dynein).

Proposed Answer:

Biased diffusion of Ndc80

proteins along the MT.

Before now there has been no mechanistically satisfactory model

of how biased diffusion actually works.
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Outline of this Talk

The main question: how do kinetochores work, i.e., how to pull

with a depolymerizing microtubule?

Issues to discuss:

• Models for load-velocity curves

• Huxley model of actin-myosin crossbridges

• Binding and unbinding of flexible proteins
• Bond breaking - Bell’s law
• Bond formation - OU process

• Sliding platelet in a flow

• Kinetochore motion
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Warmup Exercise: Skeletal Muscle
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Crossbridges
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The Power Stroke

Kinesin Animation
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The Huxley Model

Suppose a crossbridge can be

bound (B) or unbound (U )

U
kon(x)
−→

←−

koff (x)

B,

Thin
filament

Thick
filament

Crossbridge

Binding site

x

Unstressed
position

v  > 0 is contraction

Let n(x, t) be the probability density of bound crossbridges with

extension x,

∂n

∂t
= v

∂n

∂x
+kon(x)(1−

∫

∞

−∞

ndx)−koff (x)n.
k

xh

kon

offk

off

The force generated is F = ρ
∫

∞

−∞
kx n(x, t)dx.
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Load-Velocity Curve

To find the load-velocity curve

• Pick a velocity v,

• Calculate steady state n(x; v)

• Calculate the force F ,

• Plot v vs. F .

Remark: Although not biophysi-

cally accurate, this is a "typical"

load-velocity curve for molecular

motors.
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Load Dependent Unbinding

F

Bonds break in a load dependent fashion

U
kon

−→

←−

koff

B, koff = β exp(
F

F0

) (Bell′s Law).

k

G∆

x

G’∆

k’

Fx

δ
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Consequences of Bell’s Law

Suppose the load is spread uniformly among all bonds

Sn

αn

−→

←−

βn

Sn+1, αn = (N − n)kon, βn = nβ exp(
F

nF0

)

leads to the deterministic equation

dθ

dt
= (1− θ)− κθ exp(

f

θ
)

with θ = n
N

, κ = β
kon

, f = F
NF0

exhibits critical behavior.
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Remark: This is an interesting stochastic exit time problem.
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Position Dependent Binding

Unbound flexible proteins undergo an Ornstein-Uhlenbeck

process (diffusion with linear restoring force)

ξdx = −kxdt+ dW x

with spring constant k, have Gaussian equilibrium distribution,

so that the binding rate is also Gaussian

kon = κ exp(
−kx2

2kBT
).
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Sliding in a Flow

x

V

V

f

Let n(x, t) be the density of bound binders with extension x,

∂n

∂t
= −V

∂n

∂x
+ α(x)

(

NT −

∫

∞

−∞

n(x, t)dx
)

− β(x)n,

α(x) = κ exp(
−kx2

2kBT
), β(x) = koff exp(

k|x|

F0
),

The force generated is

F = k
∫

∞

−∞
xn(x, t)dx.
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And the Answer is...

V

x
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with the motion determined by the force balance equation

ξ(Vf − V )− F = 0.

• biphasic Force vs. Velocity

curve,

• Velocity vs. Vf has hysteretic

behavior (explaining the static-

kinetic friction transition). 0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

120

140

160

180

200

Velocity v
f

V
el

oc
ity

 v

Huaihua 8/15 – p.16/28



University of Utah
Mathematical Biology

theImagine 
Possibilities

Kinetochore Motion

How can depolymerizing microtubules pull?

T

L y

zl0

kMT

n   kt binders

Let n(z, y, t) be the density of bound kinetochore binders with

rest position y and binding position z,

∂n

∂t
= −

∂

∂z
(vn) + kon(z, y)

(nT

L
−

∫ l

−∞

ndz
)

− koff (z, y)n,

kon = κ exp
(

−
k(y − z)2

2kBT

)

H(l−z), koff = κoff exp
(k|z − y|

F0

)

,
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Protofilament Shape

What is the shape of the depolymerizing protofilament?

z

u

f

ii) iii)0 < l < L l > Li) l < 0

f > 0 f > 0 f < 0

θ

Total energy for a protofilament is

E =

∫ l

−∞

(α

2
(θ̇ − φ)2 +

klat

2
u2 + zf

)

ds,

du

ds
= sin θ,

dz

ds
= cos θ.

To find the equilibrium shape, set δE = 0.
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Shape Equations

Shape Equations (linearized):

d2w

dz2
= klatθ, α

d2θ

dz2
= −w + ρθ,

dρ

dz
= f,

f(z) =
k

np

∫ L

0

(y − z)n(z, y)dy

with boundary conditions

θ̇ = φ, w = 0, ρ = 0, at z = l

θ = 0, u = 0, at z = −∞

Remark: With f = 0 these reduce to the classical beam equation
d4θ
dz4

− klat
α

θ = 0.
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Depolymerization Rate

Curled or loaded filaments break more easily:

kbreak(z) = β exp(κbθ̇ −
ρ

ρ0
)

because of curvature and load - (Bell’s law).

Consequently, the depolymerization velocity is

vd =

∫ l

−∞

kbreak(z)dz,

and total force generated by the bonds is

F = k

∫ L

0

∫ l

−∞

(y − z)n(z, y, t)dzdy.

Huaihua 8/15 – p.20/28



University of Utah
Mathematical Biology

theImagine 
Possibilities

Depolymerization Rate

For an end-loaded protofilament:
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Finding the solution

• Pick a value of v and l;

• Find n(z, y; v): 0 = − ∂
∂z

(vn) + kon(z, y)
(

nT

L
−

∫ l

−∞
ndz

)

− koff (z, y)n

• Calculate f(z): f(z) = k
np

∫ L

0 (y − z)n(z, y)dy

• Find protofilament shape,

• Find vd: vd =
∫ l

−∞
kbreak(z)dz

• Adjust l until vd = v (a fixed point problem)

• Calculate the total force: F = k
∫ L

0

∫ l

−∞
(y − z)n(z, y, t)dzdy.

• Make lots of plots.
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And the Answer is . . .

Velocity (µ m s-1)
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Remark: There is no stall force. There is "disconnect" at high

loads.
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How Does that Work?
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Effects of Parameters?

γ = L2k
α

(protein stiffness/protofilament bending stiffness):

Velocity (µ m s-1)
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k (Ndc80 spring constant): There is an "optimal" k.
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Effects of Parameters?

ρ0 (Bell’s law coefficient for protofilaments):

Velocity (µ m s-1)
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Remark: Notice the "flat" load-velocity profile.
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Conclusion

• Protein flexibility plays an important role in their binding and

unbinding, etc.,

• and may lead to critical behaviors (i.e., thresholds,

bifurcations, etc.).

• Biased diffusion of Ndc80 proteins enables depolymerizing

microtubules to pull chromosomes,

• answering the question of how to pull with a "burning rope."
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Thanks!

Thanks to

• Blerta Shtylla, Pomona

College

• NSF (funding)
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