

Flexing Protein muscles: How to Pull with a "Burning Rope"

J. P. Keener

University of Utah

2015 Joint International Conference on Mathematical Biology via Guangzhou University and Huaihua University

Eukaryotic Chromosomal Segregation

- Before cells divide their chromosomes are duplicated and then moved to the center (midline) of the dividing cell.
- Once they are all centered, they are separated into two equal sets, enabling cell division.
- Question: How are chromosomes moved?

Imagine the Possibilities Mathematical Biology University of Utah

Chromosome/microtubule interactions

Chromosomes are connected to microtubules (MT) at the KINETO-CHORES where kinetochore structural complexes (such as Ndc80) bind the MT lattice.

Chromosome/microtubule interactions

Microtubules change their length by polymerizing and depolymerizing at their tip.

DYNAMIC INSTABILITY describes the process by which microtubules switch between polymerizing and depolymerizing states.

Chromosome velocities are related to the MT polymerization/depolymerization rates.

Question: How can depolymerization/polymerization affect chromosomal movement?

Question: How can depolymerizing microtubules pull the chromosomes? Remark: It is known to not be due to walking molecular motors (i.e., dynein).

Proposed Answer: Biased diffusion of Ndc80 proteins along the MT.

Before now there has been no mechanistically satisfactory model of how biased diffusion actually works.

The main question: how do kinetochores work, i.e., how to pull with a depolymerizing microtubule?

Issues to discuss:

- Models for load-velocity curves
 - Huxley model of actin-myosin crossbridges
 - Binding and unbinding of flexible proteins
 - Bond breaking Bell's law
 - Bond formation OU process
 - Sliding platelet in a flow
 - Kinetochore motion

Warmup Exercise: Skeletal Muscle

Crossbridges

The Power Stroke

Let n(x,t) be the probability density of bound crossbridges with extension x,

$$\frac{\partial n}{\partial t} = v \frac{\partial n}{\partial x} + k_{on}(x)(1 - \int_{-\infty}^{\infty} n dx) - k_{off}(x)n.$$

The force generated is $F = \rho \int_{-\infty}^{\infty} kx \ n(x,t) dx$.

Load-Velocity Curve

To find the load-velocity curve

- Pick a velocity v,
- Calculate steady state n(x; v)

- Calculate the force *F*,
- Plot *v* vs. *F*.

Remark: Although not biophysically accurate, this is a "typical" load-velocity curve for molecular motors.

Suppose the load is spread uniformly among all bonds

$$S_n \stackrel{\alpha_n}{\underset{\beta_n}{\leftarrow}} S_{n+1}, \qquad \alpha_n = (N-n)k_{on}, \qquad \beta_n = n\beta \exp(\frac{F}{nF_0})$$

leads to the deterministic equation

Remark: This is an interesting stochastic exit time problem HUAMBUA 8/15 - p.13/28

Unbound flexible proteins undergo an Ornstein-Uhlenbeck process (diffusion with linear restoring force)

 $\xi dx = -\mathbf{k}xdt + \mathbf{d}W$

with spring constant k, have Gaussian equilibrium distribution, so that the binding rate is also Gaussian

$$k_{on} = \kappa \exp(\frac{-kx^2}{2k_BT}).$$

Let n(x,t) be the density of bound binders with extension x,

$$\frac{\partial n}{\partial t} = -V\frac{\partial n}{\partial x} + \alpha(x)\left(N_T - \int_{-\infty}^{\infty} n(x,t)dx\right) - \beta(x)n,$$

$$\alpha(x) = \kappa \exp(\frac{-kx^2}{2k_BT}), \qquad \beta(x) = k_{off} \exp(\frac{k|x|}{F_0}),$$

The force generated is

Imagine the

Possibilities

Mathematical Biology University of Utah

$$F = k \int_{-\infty}^{\infty} x n(x, t) dx.$$

And the Answer is...

with the motion determined by the force balance equation

$$\xi(V_f - V) - F = 0.$$

- biphasic Force vs. Velocity curve,
- Velocity vs. V_f has hysteretic behavior (explaining the static-kinetic friction transition).

Kinetochore Motion

How can depolymerizing microtubules pull?

Let n(z, y, t) be the density of bound kinetochore binders with rest position y and binding position z,

$$\frac{\partial n}{\partial t} = -\frac{\partial}{\partial z}(vn) + k_{on}(z,y)\left(\frac{n_T}{L} - \int_{-\infty}^l ndz\right) - k_{off}(z,y)n,$$

$$k_{on} = \kappa \exp\left(-\frac{k(y-z)^2}{2k_BT}\right)H(l-z), \qquad k_{off} = \kappa_{off} \exp\left(\frac{k|z-y|}{F_0}\right)$$

Protofilament Shape

What is the shape of the depolymerizing protofilament?

Total energy for a protofilament is

$$E = \int_{-\infty}^{l} \left(\frac{\alpha}{2} (\dot{\theta} - \phi)^2 + \frac{k_{lat}}{2} u^2 + zf \right) ds,$$
$$\frac{du}{dz} = \frac{dz}{dz}$$

$$\frac{du}{ds} = \sin \theta, \qquad \frac{dz}{ds} = \cos \theta.$$

To find the equilibrium shape, set $\delta E = 0$.

Shape Equations

Shape Equations (linearized):

$$\frac{d^2w}{dz^2} = k_{lat}\theta, \qquad \alpha \frac{d^2\theta}{dz^2} = -w + \rho\theta, \qquad \frac{d\rho}{dz} = f,$$
$$f(z) = \frac{k}{n_p} \int_0^L (y - z)n(z, y)dy$$

with boundary conditions

$$\dot{\theta} = \phi, \qquad w = 0, \qquad \rho = 0, \text{ at } z = l$$

 $\theta = 0, \qquad u = 0, \text{ at } z = -\infty$

Remark: With f = 0 these reduce to the classical beam equation

$$\frac{d^4\theta}{dz^4} - \frac{k_{lat}}{\alpha}\theta = 0.$$

Curled or loaded filaments break more easily:

$$k_{break}(z) = \beta \exp(\kappa_b \dot{\theta} - \frac{\rho}{\rho_0})$$

because of curvature and load - (Bell's law). Consequently, the depolymerization velocity is

$$v_d = \int_{-\infty}^l k_{break}(z) dz,$$

and total force generated by the bonds is

$$F = k \int_0^L \int_{-\infty}^l (y - z)n(z, y, t)dzdy.$$

Depolymerization Rate

For an end-loaded protofilament:

Typical of "catch-bonds"

Finding the solution

- Pick a value of v and l;
- Find $n(z, y; \boldsymbol{v})$: $0 = -\frac{\partial}{\partial z}(\boldsymbol{v}n) + k_{on}(z, y)\left(\frac{n_T}{L} \int_{-\infty}^l ndz\right) k_{off}(z, y)n$
- Calculate f(z): $f(z) = \frac{k}{n_p} \int_0^L (y-z)n(z,y)dy$
- Find protofilament shape,
- Find v_d : $v_d = \int_{-\infty}^l k_{break}(z) dz$
- Adjust *l* until $v_d = v$ (a fixed point problem)
- Calculate the total force: $F = k \int_0^L \int_{-\infty}^l (y-z)n(z,y,t)dzdy$.
- Make lots of plots.

Remark: There is no stall force. There is "disconnect" at high loads.

How Does that Work?

Huaihua 8/15 – p.24/28

Effects of Parameters?

 $\gamma = \frac{L^2 k}{\alpha}$ (protein stiffness/protofilament bending stiffness):

k (Ndc80 spring constant): There is an "optimal" k.

Huaihua 8/15 - p.25/28

Effects of Parameters?

ρ_0 (Bell's law coefficient for protofilaments):

Remark: Notice the "flat" load-velocity profile.

- Protein flexibility plays an important role in their binding and unbinding, etc.,
- and may lead to critical behaviors (i.e., thresholds, bifurcations, etc.).
- Biased diffusion of Ndc80 proteins enables depolymerizing microtubules to pull chromosomes,
- answering the question of how to pull with a "burning rope."

Thanks!

Thanks to

- Blerta Shtylla, Pomona College
- NSF (funding)

National Science Foundation

