Next: Tyson-Fife
Up: Two_variable_models
Previous: Mitchell-Schaeffer
To make the Mitchell-Schaeffer look more like a cardiac ionic model, take
where
![\begin{displaymath}
m(v) = \left\{\begin{array}{cc} 0,
&v<0\\ v,&0<v<1\\ 1,&v>1\end{array}\right.
\end{displaymath}](img83.gif) |
(25) |
To match the M-S model, we take
![\begin{displaymath}
{g_{Na}\over C_m} = {1\over \tau_{in}} = {1\over 0.3} = 3.33...
...\over C_m} = {1\over \tau_{out}} = {1\over 6} = 0.16 /{\rm ms}
\end{displaymath}](img84.gif) |
(26) |
We also take
![\begin{displaymath}
a(v) = {1-f\over\tau_{open}+(\tau_{close}-\tau_{open})f},\qquad b(v) =
{f\over\tau_{open}+(\tau_{close}-\tau_{open})f}
\end{displaymath}](img85.gif) |
(27) |
where
![\begin{displaymath}f(v) = {1\over 2}(1+\tanh(\kappa(v-v_{gate})),
\end{displaymath}](img86.gif) |
(28) |
so that
, and
. If
, this reduces exactly to the M-S model. In the M-S model,
ms,
ms, and
.
Movie