next up previous
Nerve cells (Hodgkin-Huxley Equations)


\begin{displaymath}
C_m {d\phi\over dt} = - \bar g_{Na} m^3h(\phi - V_{Na}) - \bar g_K n^4(\phi -
V_K) - g_L(\phi - V_L) + I_{\rm app},
\end{displaymath} (1)

and

$\displaystyle {dm \over dt}$ $\textstyle =$ $\displaystyle \alpha_m(1-m) - \beta_m m,$ (2)
$\displaystyle {dn \over dt}$ $\textstyle =$ $\displaystyle \alpha_n(1-n) - \beta_n n,$ (3)
$\displaystyle {dh \over dt}$ $\textstyle =$ $\displaystyle \alpha_h(1-h) - \beta_h h.$ (4)

The specific functions $\alpha$ and $\beta$ proposed by Hodgkin and Huxley were (in units of ms$^{-1}$)
$\displaystyle \alpha_m$ $\textstyle =$ $\displaystyle 0.1\, {25 - \phi \over \exp\left({25 -\phi \over
10}\right)-1},$ (5)
$\displaystyle \beta_m$ $\textstyle =$ $\displaystyle 4\, \exp\left({-\phi \over 18}\right),$ (6)
$\displaystyle \alpha_h$ $\textstyle =$ $\displaystyle 0.07\, \exp\left({-\phi\over 20}\right),$ (7)
$\displaystyle \beta_h$ $\textstyle =$ $\displaystyle {1\over\exp({30-\phi\over 10})+1},$ (8)
$\displaystyle \alpha_n$ $\textstyle =$ $\displaystyle 0.01\, {10-\phi\over \exp({10-\phi\over
10})-1},$ (9)
$\displaystyle \beta_n$ $\textstyle =$ $\displaystyle 0.125\, \exp\left({-\phi\over 80}\right).$ (10)

Equations for $m, n, h$ can be written as

\begin{displaymath}
\tau_n(\phi){dw \over dt} = w_\infty(\phi) - w, w = m, n, {\rm or} h
\end{displaymath} (11)







next up previous