

The Effect of Discreteness in Calcium Handling

J. P. Keener

Department of Mathematics University of Utah

Introduction - Excitability

- B-Z reagent
- Nerve cells
- cardiac cells, muscle cells
- Slime mold (*dictystelium discoideum*)
- CICR (<u>Calcium Induced Calcium Release</u>)
- Forest Fires
- Features of Excitability
 - Threshold Behavior
 - Refractoriness
 - Recovery

Calcium Handling

Extracellular Space

$$\frac{dc}{dt} = J_{IPR} - J_{SERCA}$$

with

 J_{IPR} IP₃ Receptor - IP₃ and calcium regulated calcium channel,

with

 J_{IPR} IP₃ Receptor - IP₃ and calcium regulated calcium channel, J_{SERCA} Sarco- and Endoplasmic Reticulum Calcium ATPase,

with

 J_{IPR} IP₃ Receptor - IP₃ and calcium regulated calcium channel, J_{SERCA} Sarco- and Endoplasmic Reticulum Calcium ATPase,

What are the flux terms?

IP₃ **Receptors**

Flux through IP₃ receptor is diffusive,

 $J_{IPR} = g_{max} P_o(c_{sr}-c) \label{eq:JPR}$ where $P_o = S_{10}^3$ is the open probability.

Calcium Dynamics

where

$$J_{SERCA} = V_{max} \frac{c^2}{K_s^2 + c^2},$$
$$P_o = h^3 f(c)$$

Bifurcation Diagram

But the data do not look like this at all!

• At low IP₃ concentrations, calcium release is infrequent and highly irregular.

- At low IP₃ concentrations, calcium release is infrequent and highly irregular.
- At medium IP₃, calcium release is less rare and less irregular.

- At low IP₃ concentrations, calcium release is infrequent and highly irregular.
- At medium IP₃, calcium release is less rare and less irregular.
- At high IP₃, calcium release is frequent and regular (a periodic oscillation).

- At low IP₃ concentrations, calcium release is infrequent and highly irregular.
- At medium IP₃, calcium release is less rare and less irregular.
- At high IP₃, calcium release is frequent and regular (a periodic oscillation).

The data show no Hopf Bifurcations or sharp onset of oscillations.

What went wrong?

There are two problems with this model:

- 1. Calcium is not spatially homogenious; channels are controlled by **local** calcium concentration.
- 2. Channel openings are not deterministic.

with

 x_n location of release sites separated by distance L,

with

 x_n location of release sites separated by distance L,

 $D\frac{\partial^2 c}{\partial x^2}$ spatial diffusion of calcium

Apply Homogenization

Standard homogenization theory applied to

$$\frac{\partial u}{\partial t} = D \frac{\partial^2 u}{\partial x^2} + \frac{g(\frac{x}{\epsilon})f(u) - h(u)}{\epsilon}$$

yields

$$\frac{\partial u}{\partial t} = D \frac{\partial^2 u}{\partial x^2} + \mathbf{G}f(u) - h(u)$$

where $G = \frac{1}{L} \int_0^L g(x) dx$, so that F(u) = Gf(u) - h(u) is the effective release/uptake function.

Apply Homogenization

Standard homogenization theory applied to

$$\frac{\partial u}{\partial t} = D\frac{\partial^2 u}{\partial x^2} + g(\frac{x}{\epsilon})f(u) - h(u)$$

yields

$$\frac{\partial u}{\partial t} = D \frac{\partial^2 u}{\partial x^2} + \frac{G}{G} f(u) - h(u)$$

where $G = \frac{1}{L} \int_0^L g(x) dx$, so that F(u) = Gf(u) - h(u) is the effective release/uptake function.

This is the well-known **Bistable Equation**.

The Bistable Equation

$$\frac{\partial u}{\partial t} = D\frac{\partial^2 u}{\partial x^2} + F(u)$$

with F(0) = F(a) = F(1) = 0, 0 < a < 1.

- There is a unique traveling wave solution u = U(x ct),
- The solution is stable up to phase shifts,
- The speed scales as $c = c_0 \sqrt{D}$,
- U is a homoclinic trajectory of DU'' + cU' + F(U) = 0

There can be propagation failure (also called pinning) with discrete release. What happens is shown in this movie with <u>Discrete Release Sites</u>.

How to fix this? cf. J. P. Keener, Propagation of Waves in an Excitable Medium with Discrete Release Sites, SIAM J. Appl. Math., 61, 317-334 (2000).

Fire-Diffuse-Fire Model

Suppose calcium c is released from

- a long line of evenly spaced release sites;
- Release of full contents σ occurs when the local concentration c reaches threshold θ .

$$\frac{\partial c}{\partial t} = D \frac{\partial^2 c}{\partial x^2} - k_s c + \frac{\sigma}{L} \sum_n \delta(x - nL) \delta(t - t_n)$$

Fire-Diffuse-Fire-II

Recall that the solution of the heat equation with δ -function initial data at $x = x_0$ and at $t = t_0$ is

$$c(x,t) = \frac{1}{\sqrt{4\pi D(t-t_0)}} \exp\left(-\frac{(x-x_0)^2}{4D(t-t_0)} - k_s(t-t_0)\right)$$

Fire-Diffuse-Fire-III

Suppose known firing times are $t_j = j\Delta t$ at position $x_j = jL$, $j = -\infty, \cdots, n-1$. Find t_n . At $x = x_n = nL$, $c(nL,t) = \frac{1}{L} \sum_{j=-\infty}^{n-1} \frac{\sigma}{\sqrt{4\pi D(t-t_j)}} \exp(-\frac{(n-j)^2 L^2}{4D(t-t_j)} - k_s(t-t_j)) \equiv \frac{\sigma}{L} F(\frac{D\Delta t}{L^2})$

Fire-Diffuse-Fire-IV

To find the delay Δt , solve the equation

$$\frac{\theta L}{\sigma} = f(\frac{D\Delta t}{L^2}).$$

This is easy to do graphically:

Conclusion: Propagation fails for $\frac{\theta L}{\sigma} > \theta^*$ (i.e. if *L* is too large, θ is too large, or σ is too small.)

What went wrong?

There are two problems with this model:

- 1. Calcium is not spatially homogenious; channels are controlled by local calcium concentration.
- 2. Channel openings are not deterministic.

Imagine the Possibilities

Calcium Sparks and Waves

A photolysis followed by zap $\Delta t = 100 \text{ ms}$

 y_n a random variable with values 0 or 1, with transition probability that depends on local calcium concentration.

Stochastic Fire-Diffuse-Fire Model

Suppose calcium c is released from

- a long line of evenly spaced release sites;
- Release of full contents σ is a stochastic process with probability depending on the local calcium concentration.

$$\frac{\partial c}{\partial t} = D \frac{\partial^2 c}{\partial x^2} - k_s c + \frac{\sigma}{L} \sum_n \delta(x - nL) \delta(t - t_n)$$

Stochastic Analysis

Let $P_n(t)$ be the probability that site n has fired before time t. Then

$$\frac{dP_n}{dt} = k_{open}(c(x_n, t))(1 - P_n)$$

where $P_n(0) = 0$, and

$$k_{open}(c) = K_M \frac{c^N}{\theta^N + c^N}.$$

Remark: c(x,t) is known as before

$$c(x,t) = \sum_{j=0}^{n-1} \frac{1}{\sqrt{4\pi D(t-t_j)}} \exp\left(-\frac{(x-x_j)^2}{4D(t-t_j)} - k_s(t-t_j)\right)$$

except that now the t_j are continuous random variables.

Suppose site zero fires at time t = 0. What happens at site 1?

 $p_1(t) = \frac{dP_1}{dt}$, and $m_k = \int_0^\infty t^k p_1(t) dt$ is the k^{th} moment. Therefore, $m_0 = P_1(\infty)$ is the probability of firing at all.

Observe: As $\frac{\sigma}{\theta L}$ increases, firing occurs sooner and with less variance.

Suppose site zero fires at time t = 0. What happens at site n > 1? $p_n(t)$ satisfies the renewal equation

$$p_n(t) = \int_0^\infty p_1(t-s)p_{n-1}(s)ds.$$

Whole Cell Calcium Release Events

Whole cell calcium release events are governed by three things:

- localized calcium release (sparks) a Poisson process
- spark to wave transition whole cell release
- resetting the threshold θ (time dependent recovery with time constant k_h).

Putting it all together (using similar methods)

Whole Cell Calcium Release Events

Whole cell calcium models fail because:

- Release sites are discrete and diffusion is too slow;
- Release is a stochastic event for which the law of large number does not apply.

Whole cell calcium models fail because:

- Release sites are discrete and diffusion is too slow;
- Release is a stochastic event for which the law of large number does not apply.

Consequently, not this

Whole cell calcium models fail because:

- Release sites are discrete and diffusion is too slow;
- Release is a stochastic event for which the law of large number does not apply.

but this

- Funding for research provided by a grant from the NSF.
- No computers were harmed by Microsoft products during the production of this talk.

The End