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Introduction - Excitability

• B-Z reagent
• Nerve cells
• cardiac cells, muscle cells
• Slime mold (dictystelium discoideum)
• CICR (Calcium Induced Calcium Release)
• Forest Fires

Features of Excitability
• Threshold Behavior
• Refractoriness
• Recovery RefractoryResting Excited Recovering

Don’t forget flush toilets. – p.2/28
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Calcium Handling
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Basic Calcium Model

dc
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= JIPR − JSERCA
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What are the flux terms?
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Flux through IP3 receptor is diffusive,
JIPR = gmaxPo(csr − c)

where Po = S3
10 is the open probability.

Discrete Effects – p.5/28
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Calcium Dynamics

dc

dt
= (gmaxPo + Jer)(csr − c) − JSERCA,

dh

dt
= φh(c)(1 − h) − ψh(c)h,

where
JSERCA = Vmax

c2

K2
s +c2

,

Po = h3f(c)

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

time (s)

10−2 10−1 100
0

0.2

0.4

0.6

0.8

1

 c (µ M)

 h

Discrete Effects – p.6/28



University of Utah
Mathematical Biology

theImagine 
Possibilities

Bifurcation Diagram
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But the data do not look like this at all!
Discrete Effects – p.7/28



University of Utah
Mathematical Biology

theImagine 
Possibilities

Onset of Oscillations

• At low IP3 concentrations, calcium release is infrequent and
highly irregular.

• At medium IP3, calcium release is less rare and less
irregular.

• At high IP3, calcium release is frequent and regular (a
periodic oscillation).

The data show no Hopf Bifurcations or sharp onset of oscilla-

tions.

Discrete Effects – p.8/28
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Problems

What went wrong?

There are two problems with this model:

1. Calcium is not spatially homogenious; channels are
controlled by local calcium concentration.

2. Channel openings are not deterministic.

Discrete Effects – p.9/28
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Discrete Release Sites

Cardiac Cell

Calcium release sites

∂c
∂t

= 1
L

∑

n δ(x− xn) JIPR − JSERCA + D ∂2c
∂x2

with
xn location of release sites separated by distance L,

D ∂2c
∂x2 spatial diffusion of calcium
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Apply Homogenization

Standard homogenization theory applied to

∂u

∂t
= D

∂2u

∂x2
+ g(

x

ε
)f(u) − h(u)

yields

∂u

∂t
= D

∂2u

∂x2
+Gf(u) − h(u)

where G = 1
L

∫ L

0 g(x)dx, so that F (u) = Gf(u) − h(u) is the
effective release/uptake function.

This is the well-known Bistable Equation.

Discrete Effects – p.11/28
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The Bistable Equation

∂u

∂t
= D

∂2u

∂x2
+ F (u)

with F (0) = F (a) = F (1) = 0, 0 < a < 1.
• There is a unique traveling wave solution u = U(x− ct),
• The solution is stable up to phase shifts,
• The speed scales as c = c0

√
D,

• U is a homoclinic trajectory of DU ′′ + cU ′ + F (U) = 0

−3 −2 −1 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 x

 U
(x

)

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

 U

 d
U

/d
x

Discrete Effects – p.12/28



University of Utah
Mathematical Biology

theImagine 
Possibilities

Problems

There can be propagation failure (also called pinning) with
discrete release. What happens is shown in this movie with
Discrete Release Sites.

How to fix this? cf. J. P. Keener, Propagation of Waves in an
Excitable Medium with Discrete Release Sites, SIAM J. Appl.
Math., 61, 317-334 (2000).

Discrete Effects – p.13/28
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Fire-Diffuse-Fire Model

L

Suppose calcium c is released from
• a long line of evenly spaced release sites;
• Release of full contents σ occurs when the local

concentration c reaches threshold θ.
∂c

∂t
= D

∂2c

∂x2
− ksc+

σ

L

∑

n

δ(x− nL)δ(t− tn)

Discrete Effects – p.14/28
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Fire-Diffuse-Fire-II

Recall that the solution of the heat equation with δ-function initial
data at x = x0 and at t = t0 is

c(x, t) =
1

√

4πD(t− t0)
exp(−

(x− x0)
2

4D(t− t0)
− ks(t− t0))
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Fire-Diffuse-Fire-III

Suppose known firing times are tj = j∆t at position xj = jL,
j = −∞, · · · , n− 1. Find tn.
At x = xn = nL,

c(nL, t) =
1

L
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Fire-Diffuse-Fire-IV

To find the delay ∆t, solve the equation

θL

σ
= f(

D∆t

L2
).

This is easy to do graphically:
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Conclusion: Propagation fails for θL
σ
> θ∗ (i.e. if L is too large, θ

is too large, or σ is too small.)

Discrete Effects – p.17/28
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Problems

What went wrong?

There are two problems with this model:

1. Calcium is not spatially homogenious; channels are
controlled by local calcium concentration.

2. Channel openings are not deterministic.

Discrete Effects – p.18/28
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Calcium Sparks and Waves
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Discrete Release Sites

Cardiac Cell

Calcium release sites

∂c
∂t

= gmax
1
L

∑

n δ(x− xn) yn (ce − c) − JSERCA +D ∂2c
∂x2

with
yn a random variable with values 0 or 1, with transition
probability that depends on local calcium concentration.

Remark: When we replace yn with its expected value Po, we are

invoking the law of large numbers.

Discrete Effects – p.20/28
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Stochastic Fire-Diffuse-Fire Model

L

Suppose calcium c is released from
• a long line of evenly spaced release sites;
• Release of full contents σ is a stochastic process with

probability depending on the local calcium concentration.

∂c

∂t
= D

∂2c

∂x2
− ksc+

σ

L

∑

n

δ(x− nL)δ(t− tn)
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Stochastic Analysis

Let Pn(t) be the probability that site n has fired before time t.
Then

dPn

dt
= kopen(c(xn, t))(1 − Pn)

where Pn(0) = 0, and

kopen(c) = KM
cN

θN + cN
.
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Remark: c(x, t) is known as before

c(x, t) =

n−1
X

j=0

1
p

4πD(t − tj)
exp(−

(x − xj)
2

4D(t − tj)
− ks(t − tj))

except that now the tj are continuous random variables.
Discrete Effects – p.22/28
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Site 1

Suppose site zero fires at time t = 0. What happens at site 1?
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, and mk =

∫

∞

0 tkp1(t)dt is the kth moment.
Therefore, m0 = P1(∞) is the probability of firing at all.

Observe: As σ
θL

increases, firing occurs sooner and with less

variance.
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Site n

Suppose site zero fires at time t = 0. What happens at site
n > 1?
pn(t) satisfies the renewal equation

pn(t) =

∫

∞

0
p1(t− s)pn−1(s)ds.

0 5 10 15
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

k
s
t

p n(t)

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

k
s
t

p n(t)

σ
θL

small - wave fails σ
θL

large - wave succeeds – p.24/28



University of Utah
Mathematical Biology

theImagine 
Possibilities

Whole Cell Calcium Release Events

Whole cell calcium release events are governed by three things:

• localized calcium release (sparks) - a Poisson process
• spark to wave transition - whole cell release
• resetting the threshold θ (time dependent recovery with time

constant kh).

Putting it all together (using similar methods)
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Whole Cell Calcium Release Events
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Conclusion

Whole cell calcium models fail because:

• Release sites are discrete and diffusion is too slow;
• Release is a stochastic event for which the law of large

number does not apply.

Discrete Effects – p.27/28
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