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Introduction

We are in the throes of a paradigm shift:

• From:

Deterministic systems reigned, signal was good, noise was

bad, stochastic effects were rarely considered (unless you

were Don Ludwig)

• To:

Stochasticity, variation and variability are of fundamental

importance to the operation of biological systems.
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Facts of Death

Diffusion is Your Enemy

• Entropy increases;

• Diffusion is real; molecules move down their concentration

gradient; nonuniformity is smoothed out.

• Structures deteriorate or dissipate - naturally. (Mountains

erode, cars rust, computers fails, information is lost.)

Randomness is the enemy of non-living things.
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• In order to survive, organisms must overcome the

dissipative effects of diffusion.
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Facts of Life

• In order to survive, organisms must overcome the

dissipative effects of diffusion.

• In fact, living organisms have made diffusion into their

friend, by making use of the diffusion to perform various

tasks, including

• signalling,

• pattern formation,

• making measurements, and

• making decisions

• Basic Question: How do they do this?

• Answer: Diffusion coupled with positive feedback enable

living organisms to survive and flourish.
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About Diffusion

Most molecules move by a random walk:
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Diffusion across a Membrane

For diffusion across a membrane

J =
AD

L
(C1 − C2)

V

C2

1 V2L

C1

J
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Diffusion across a Membrane

For diffusion across a membrane

J =
AD

L
(C1 − C2)

V1 V2L

C1

J(flux)

C2

Flux
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Diffusion across a Membrane

For diffusion across a membrane

J =
AD

L
(C1 − C2)

V1 V2L

J

C1 C2

Flux is proportional to concentration difference , inversely

proportional to L ength.
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Diffusion across a Membrane

For diffusion across a membrane

J =
AD

L
(C1 − C2)

V1 V2L

J

C1 C2

Flux is proportional to concentration difference , inversely

proportional to L ength.

• Flux is always from high to low concentrations;

• Flux is decreased when Length is large or concentration

difference is small.

This fact presents both problems and opportunities.
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Diffusion in Space

Fick’s law: Small molecules undergo a random walk. When there

are a large number of these molecules, their motion can be

described by

J = − D ∇C
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Diffusion in Space

Fick’s law: Small molecules undergo a random walk. When there

are a large number of these molecules, their motion can be

described by

J = − D ∇C

molecular flux, diffusion coefficient, concentration gradient.

Nernst-Planck equation: The motion of ions is driven by diffusion

and gradients of a potential field ψ via

J = −D(∇C +
zF

RT
C∇ψ).
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Carrier Mediated Diffusion

Problem: If glucose only diffuses down its gradient, there must

always be more glucose in the blood than in cells, or else cells

will lose their glucose.

Solution:

1) Use a transporter that binds

and releases glucose;

���������������������
���������������������
���������������������

���������������������
���������������������
���������������������

BAMM 5/16 – p.8/49



University of Utah
Mathematical Biology

theImagine 
Possibilities

Carrier Mediated Diffusion

Problem: If glucose only diffuses down its gradient, there must

always be more glucose in the blood than in cells, or else cells

will lose their glucose.

Solution:

1) Use a transporter that binds

and releases glucose;

���������������������
���������������������
���������������������

���������������������
���������������������
���������������������

BAMM 5/16 – p.8/49



University of Utah
Mathematical Biology

theImagine 
Possibilities

Carrier Mediated Diffusion

Problem: If glucose only diffuses down its gradient, there must

always be more glucose in the blood than in cells, or else cells

will lose their glucose.

Solution:

1) Use a transporter that binds

and releases glucose;

���������������������
���������������������
���������������������

���������������������
���������������������
���������������������

BAMM 5/16 – p.8/49



University of Utah
Mathematical Biology

theImagine 
Possibilities

Carrier Mediated Diffusion

Problem: If glucose only diffuses down its gradient, there must

always be more glucose in the blood than in cells, or else cells

will lose their glucose.

Solution:

1) Use a transporter that binds

and releases glucose;

���������������������
���������������������
���������������������

���������������������
���������������������
���������������������

BAMM 5/16 – p.8/49



University of Utah
Mathematical Biology

theImagine 
Possibilities

Carrier Mediated Diffusion

Problem: If glucose only diffuses down its gradient, there must

always be more glucose in the blood than in cells, or else cells

will lose their glucose.

Solution:

1) Use a transporter that binds

and releases glucose;

���������������������
���������������������
���������������������

���������������������
���������������������
���������������������

BAMM 5/16 – p.8/49



University of Utah
Mathematical Biology

theImagine 
Possibilities

Carrier Mediated Diffusion

Problem: If glucose only diffuses down its gradient, there must
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J = Jmax
ge − gi

(ge +K)( gi
K
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Carrier Mediated Diffusion

Problem: If glucose only diffuses down its gradient, there must

always be more glucose in the blood than in cells, or else cells

will lose their glucose.

Solution:

1) Use a transporter that binds

and releases glucose; P

���������������������
���������������������
���������������������

���������������������
���������������������
���������������������

For this system,

J = Jmax
ge − gi

(ge +K)( gi
K

+ 1)

2) Immediately phosphorylate internal glucose, setting gi = 0 so

that flux is always inward!

J = Jmax
ge

ge +K
BAMM 5/16 – p.8/49
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Signalling - 1952

Lesson 1: Reaction/Diffusion

systems describing excitable

media can produce signals.

Alan Hodgkin 1914-1998, Andrew

Huxley 1917-2012

HH worked on squid giant axon

(not giant squid axons)
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The Hodgkin-Huxley Equations

Intracellular Space

Cm I
ion

v

v

v = v − v

e

i

I
Na

I
l

I
K

i  e

Extracellular Space

Tracking the ionic charge Q across a nerve cell membrane,

dQ

dt
≡ Cm

dV

dt
= − INa − IK − Il ,
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Tracking the ionic charge Q across a nerve cell membrane,

dQ

dt
≡ Cm

dV

dt
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Intracellular Space
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Extracellular Space

Tracking the ionic charge Q across a nerve cell membrane,

dQ

dt
≡ Cm

dV

dt
= − INa − IK − Il ,
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The Hodgkin-Huxley Equations

Intracellular Space

Cm I
ion

v

v

v = v − v

e

i

I
Na

I
l

I
K

i  e

Extracellular Space

Tracking the ionic charge Q across a nerve cell membrane,

dQ

dt
≡ Cm

dV

dt
= − INa − IK − Il ,

with sodium current INa, potassium current IK, and leak

current Il.
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ev

v

v = v − v

i

I
K

i  e

Extracellular Space

Intracellular Space

I
Na

Cm I
ion

v

Ionic currents are regulated by voltage in time dependent fashion

Cm
dv

dt
+ Iion(v,w) = Iin where

dw

dt
= g(v,w), w ∈ R3

w (m, n, and h in HH parlance) are called gating variables.

BAMM 5/16 – p.11/49



University of Utah
Mathematical Biology

theImagine 
Possibilities

Sodium Ion Channel kinetics

ev

v

v = v − v

i

I
K

i  e

Extracellular Space

Intracellular Space

I
Na

Cm I
ion

v

Important observations:

• Currents are driven by concentration differences (via

Nernst-Planck equation);

• Currents are regulated via positive (for sodium) and

negative (for potassium) feedbacks.
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Spatially Extended Excitable Media

Neurons and axons
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The Cable Equation

Ve(x)

It dx

Cm dx
Iion dx

Vi (x)

Ie(x)

Ii(x)

It dx

Cm dx
Iion dx

Ve(x+dx)

Vi (x+dx)

Extracellular
space

Intracellular
space

Cell
membrane

re dx

ri dx

Cm
∂v

∂t
+Iion(v,w) =

∂

∂x

(

1

rc

∂v

∂x

)

where
dw

dt
= g(v,w), w ∈ R3

This equation is referred to as the cable equation, and is a
diffusion-reaction equation.
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Excitable Wave Behavior

HH calculated that their equations had propagating pulse

solutions (travelling waves), a breakthrough discovery!

This is now known to be the fundamental mechanism underlying

signalling in

• neurons

• cardiac tissue

• calcium signalling

• Dictyostelium

cAMP signalling
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Development - 1952

Reaction/Diffusion in activator-inhibitor

systems can produce patterns.

Alan Turing

1912-1954

Zebra fish Zebra stripes Shell patterns
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Cell Polarization

Question: How do cells determine their front or back? How do

they go where they “want" to go?

(Click on Figure to see movie)
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Biology of Cell Polarization

cAMP

G*G

R*R PI3K*

PIP2

PTEN*

PIP3

APTENPI3K

A*

Extracellular Space

Membrane

Intracellular Space

Small GTPases, denoted A (e.g., Cdc42, Rac and Rho) are

regulators of actin nucleation and growth in eukaryotic cells.

• Is activated by a signalling cascade;

• In active form (A∗) is membrane bound, diffuses slowly, and

regulates actin polymerization;

• In inactive form (A) is in cytosol, and diffuses freely.

• The active form acts to activate the inactive form (positive

feedback).
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Cell Polarization

Build a model with u = [A∗], v = [A],

∂u

∂t
=
Du

R2

∂2u

∂θ2
+ f(u, v)

∂v

∂t
=
Dv

R2

∂2v

∂θ2
− f(u, v)

where

f(u, v) = (S(θ, t) +
γu2

K2 + u2
)v − δu

and θ is the angular variable, Du ≪

Dv, and periodic boundary condi-

tions.

A

A*
Membrane

Intracellular
Space

cAMP Extracellular
Space
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(This model adapted from work of Edelstein-Keshet, Jilkine, Holmes, et al.)
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The ODE System ...

The ODE system is bistable,

u+ v =WT

du

dt
= (S +

γu2

K2 + u2
)(WT − u)− δu
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u:
 f(
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 =

 0

exhibits hysteretic response to Stimuli.
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The PDE System...

has hysteretic response to

Stimuli:
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can follow a moving

Stimulus:

Lesson 2: Differences in rates of diffusion coupled with appropri-

ate reactions can be used to make stimulus-response decisions.
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Problem 3: Quorum Sensing

Quorum sensing: The ability of a bacterium to sense the size of

its colony and to regulate its activity in response.

Examples:

• Vibrio fischeri live in the photophores (light organs) of

Hawaiian Bobtail squid and luminesce when colony size is

sufficiently large.

• Pseudomonas aeruginosa: Major cause of infection in hospitals

and in Cystic Fibrosis patients. In planktonic form, they are

readily cleared, but in biofilm they are well-protected by the

polymer gel in which they reside. However, they do not form

the gel until the colony is of sufficient size, i.e., quorum

sensing.

Question: How do bacteria measure the size of their colony?

BAMM 5/16 – p.22/49
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What Stuff Matters?

Wild Type Biofilm Mutant Mutant with autoinducer

Autoinducer (HSL): a molecule that is made by the cell and can

freely diffuse across the membrane of the cell.

BAMM 5/16 – p.23/49
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How Is Autoinducer Produced?

LasR

rsaL

LasI

RsaL

LasR

rhlR

RhlR

RhlR

RhlI

rhlI

3−oxo−C12−HSL

lasI

lasR

C4−HSL

GacA

Vfr

A

A
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Biochemistry of Quorum Sensing

lasI

lasR

BAMM 5/16 – p.25/49



University of Utah
Mathematical Biology

theImagine 
Possibilities

Biochemistry of Quorum Sensing

LasI
3−oxo−C12−HSL

lasR

lasI

ALasR
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Biochemistry of Quorum Sensing
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Biochemistry of Quorum Sensing
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Biochemistry of Quorum Sensing
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Autoinducer Kinetics

E

A

dA

dt
= F (A,R,P ) + δ(E − A)

dE

dt
= − kEE + δ(A−E)
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Autoinducer Kinetics

E

A

dA

dt
= F (A,R,P ) + δ(E − A)

dE

dt
= − kEE + δ(A−E)

rate of change,
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Autoinducer Kinetics

E

A

dA

dt
= F (A,R,P ) + δ(E − A)

dE

dt
= − kEE + δ(A−E)

rate of change, production or degradation rate,
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Autoinducer Kinetics

E

A

dA

dt
= F (A,R,P ) + δ(E − A)

dE

dt
= − kEE + δ(A−E)

rate of change, production or degradation rate, diffusive

exchange,
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Autoinducer Kinetics

E

A

dA

dt
= F (A,R,P ) + δ(E − A)

(1− ρ) (
dE

dt
+KEE) = ρ δ(A−E)

rate of change, production or degradation rate, diffusive

exchange, density dependence.

Main point reiterated!!! Flux of A out of the cell is related to the

amount of E in the extracellular space.
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Simplified Model

dA

dt
= F (A) + δ(E − A),

(1− ρ)(
dE

dt
+ kEE) = ρδ(A−E),

where F (A) = F0 +
V A2

K2

A
+A2
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Two Variable Phase Portrait

dA

dt
= F (A) + δ(E −A),

(1− ρ)(
dE

dt
+ kEE) = ρδ(A− E),

Nullclines:

• dA
dt

= 0 : E = A−
1

δ
F (A)

• dE
dt

= 0 : A = (1−ρ
ρδ
kE + 1)E

E

A
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Two Variable Phase Portrait

dA

dt
= F (A) + δ(E −A),

(1− ρ)(
dE

dt
+ kEE) = ρδ(A− E),

Nullclines:

• dA
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= 0 : E = A−
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δ
F (A)
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Two Variable Phase Portrait

dA

dt
= F (A) + δ(E −A),

(1− ρ)(
dE

dt
+ kEE) = ρδ(A− E),

Nullclines:

• dA
dt

= 0 : E = A−
1

δ
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Result

A density dependent switch (like a thermostat).
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Summary: Quorum Sensing

Lesson 3:

• Rate at which something can be dumped is an indicator of

the size of the space into which it is being dumped.

• Diffusion coupled with positive feedback enables hysteretic

switches,

• which enable an organism to make decisions based on a

measurement.

BAMM 5/16 – p.30/49



University of Utah
Mathematical Biology

theImagine 
Possibilities

Problem 4: Cell Size Measurement

Fission Yeast S. pombe
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Cell Cycle Chemistry

Pom1

Cdr2

Wee1−PWee1

Cdc2

Cdc25−PCdc25

Cdc2−P

Cdr2−P

mitosis

Positive Feedback

• Pom1, which inhibits Cdr2 activity, is localized to the cell

membrane, at the pole.

• Cdr2, which inhibits Wee1 activity, diffuses freely in the cell

• Cdc2, which activates mitosis via a positive feedback

network, is localized to the cell center (the nucleus).
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Cell Size Measurements

Track the amount of [Cdr2] in the cell:

∂r

∂t
= D

∂2r

∂x2
+

krP rP

KrP + rP
, r = [Cdr2], rP = [Cdr2P],

with boundary conditions D ∂r
∂x

= −
krr

Kr+r
at x = L and D ∂r

∂x
= 0

at x = 0, with Pom 1 activity at the boundary
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Cell Size Measurements

The remaining entities are local-

ized to x = 0 and are governed by

ordinary differential equations

Pom1

Cdr2

Wee1−PWee1

Cdc2

Cdc25−PCdc25

Cdc2−P

Cdr2−P

mitosis

Positive Feedback

dw

dt
= −

k1wmw

K1
w + w

−
k2wr(0)w

K2
w + w

+
kwP

wP

Kwp + wP
,

dm

dt
=

kmcmP

Km +mP
−

kmP
wm

KmP
+m

,

dc

dt
=

kccP

Kc + cP
−

kcPmc

KcP + c
.

with w =[Wee1], m =[Cdc2], c =[Cdc25].
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Cell Size Measurements
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• There is ultrasensitive (i.e., sharp sigmoidal) dependance of

[Cdr2] at the cell center on cell length.

• The concentration of [Cdr2] at the cell center triggers a

switch in Cdc2 activity,

• leading to (Lesson 4:) a length dependent, hysteretic,

transition to mitosis.
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II - Flagellar Length Detection

• Flagella grow at a velocity that

decreases as they get longer.
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II - Flagellar Length Detection

• Flagella grow at a velocity that

decreases as they get longer.

• If a flagellum is broken off, it will

regrow at the same velocity as

when it first grew.
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II - Flagellar Length Detection

• Flagella grow at a velocity that

decreases as they get longer.

• If a flagellum is broken off, it will

regrow at the same velocity as

when it first grew.

Question: How does the bacterium measure flagellar length?
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How Do Flagella Grow?

• Step 1: Secretion

• Step 2: Diffusion

• Step 3: Polymerization

��������������
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• Step 1: Secretion

• Step 2: Diffusion

• Step 3: Polymerization
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How Do Flagella Grow?

• Step 1: Secretion

• Step 2: Diffusion

• Step 3: Polymerization

��������������
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Modelling Flagellar Growth

Step 2: Diffusion

Important Fact: Filament is a narrow hollow tube, so movement

(diffusion) is single file.

Let p(x, t) be the probability that a molecule is at position x at

time t. Then,
∂p

∂t
+
∂J

∂x
= 0

where

J = −D
∂p

∂x
.

Remark: J
l
= flux in molecules per unit time.
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Rate of Secretion

Step 1: Secretion

Let P (t) be the probability that ATP-ase is bound

N

C

Step 3

C
ring

MS ring

CM FlhA FlhB

FliJ

ATP ADP+Pi

FliH

membrane
components

FliI
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Rate of Secretion

Step 1: Secretion

Let P (t) be the probability that ATP-ase is bound

N

C

Step 3

C
ring

MS ring

CM FlhA FlhB

FliJ

ATP ADP+Pi

FliH

membrane
components

FliI

dP
dt

=
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Rate of Secretion

Step 1: Secretion

Let P (t) be the probability that ATP-ase is bound

FliJ

Step 2

N

C

C
ring

MS ring

CM FlhA FlhB

membrane
components

FliH

FliI

dP
dt

= Kon(1− P )

on rate,
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Rate of Secretion

Step 1: Secretion

Let P (t) be the probability that ATP-ase is bound

C

Step 4

FliJ

N

C
ring

MS ring

CM FlhA FlhB

membrane
components

FliI

FliH

dP
dt

= Kon(1− P ) − koffP

on rate, off rate,
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Rate of Secretion

Step 1: Secretion

Let P (t) be the probability that ATP-ase is bound

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

Step 4 Blocked

ATP ADP+Pi

N

C

C

ring

MS ring

CM FlhA FlhB

FliJ

membrane

components

FliH

FliI

dP
dt

= Kon(1− P ) −koff (1− p(0, t))P

on rate, off rate, restricted if blocked by another molecule in

the tube.

BAMM 5/16 – p.39/49



University of Utah
Mathematical Biology

theImagine 
Possibilities

Rate of Secretion

Step 1: Secretion

Let P (t) be the probability that ATP-ase is bound

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
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��
��
��

��
��
��
��
��
��
��

Step 4 Blocked

ATP ADP+Pi

N

C

C

ring

MS ring

CM FlhA FlhB

FliJ

membrane

components

FliH

FliI

dP
dt

= Kon(1− P ) − koff (1− p(0, t))P

on rate, off rate, restricted if blocked by another molecule in

the tube. Thus,

J
l
= koff (1− p(0, t))P at x = 0 (A Robin boundary condition).
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Rate of Polymerization

Stage 3: Polymerization

J

l
= kpp

at the polymerizing end x = L.

�������
�������
�������
�������

Then, the growth velocity is

dL

dt
= β

J

l
≡ V

where β =length of filament per monomer (0.5nm/monomer)

· · · a moving boundary problem.
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Diffusion Model

After some work, it can be shown that

λ =
1

j
−

Ka

1− j
−Kb

where j = J
lKon

, λ = lLKon

D
, Ka = Kon

koff
, Kb =

Kon

kp
.

A good approximation J ≈
1

KJ+
L
D

≈
D
L

for large L
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Filament Length Control

Introducing FlgM and σ28:
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Filament Length Control

Introducing FlgM and σ28:

Class 1→ Class 2
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Filament Length Control

Introducing FlgM and σ28:

Class 1 → Class 2
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Filament Length Control

Introducing FlgM and σ28:

Class 1 → Class 2
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FlgM-σ28 Chemistry

σ

σ

E
28

FliC
J(L)

*Eσ∗

FlgM FlgM

FlgM28 σ
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FlgM-σ28 Chemistry

σ

σ

E
28

FliC
J(L)

*Eσ∗

FlgM FlgM

FlgM28 σ

• FlgM inhibits σ28 activity;
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FlgM-σ28 Chemistry

σ

σ

E
28

FliC
J(L)

*Eσ∗

FlgM FlgM

FlgM28 σ

• FlgM inhibits σ28 activity;

• Therefore, during stage 3, FlgM inhibits its own production

(negative feedback);
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FlgM-σ28 Chemistry

σ

σ

E
28

FliC
J(L)

*Eσ∗

FlgM FlgM

FlgM28 σ

• FlgM inhibits σ28 activity;

• Therefore, during stage 3, FlgM inhibits its own production

(negative feedback);

• And, FlgM inhibits the production of Flagellin (FliC).
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FlgM-σ28 Secretion Dynamics

• FlgM is not secreted during hook

growth; σ28 inactivated.

FlgE

Hook

Basal Body
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FlgM-σ28 Secretion Dynamics

• FlgM is not secreted during hook

growth; σ28 inactivated.

• When hook growth is terminated,

FlgM secretion begins, initiating

FliC production.

Basal Body

Hook−filament
junction

Hook
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FlgM-σ28 Secretion Dynamics

• FlgM is not secreted during hook

growth; σ28 inactivated.

• When hook growth is terminated,

FlgM secretion begins, initiating

FliC production.

• FlgM is secreted during filament

growth.

FliC

Hook−filament
junction

Hook

Filament

Basal Body
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Tracking Concentrations

FlgM (M ):

dM

dt
= rate of production− rate of secretion

Flagellin (FliC) (F ):

dF

dt
= rate of production− rate of secretion

Filament Length (L):

dL

dt
= β ∗ rate of FliC secretion

.
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Tracking Concentrations

FlgM (M ):

dM

dt
=

K∗

KM +M
− α

M

F +M
J

Flagellin (FliC) (F ):

dF

dt
=

K∗

KM +M
− α

F

F +M
J

Filament Length (L):

dL

dt
= β

F

M + F
J

with J = 1

KJ+
L
D

(which is length dependent!) .
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Filament Growth
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• Before secretion begins FlgM concentration is large. When

secretion begins, FlgM concentration drops, producing FliC

and more FlgM.
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Filament Growth
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• Before secretion begins FlgM concentration is large. When

secretion begins, FlgM concentration drops, producing FliC

and more FlgM.

• As the filament grows, secretion slows, FlgM concentration

increases, shutting off FliC and FlgM production.
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Filament Growth
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• Before secretion begins FlgM concentration is large. When

secretion begins, FlgM concentration drops, producing FliC

and more FlgM.

• As the filament grows, secretion slows, FlgM concentration

increases, shutting off FliC and FlgM production.

• If filament is suddenly shortened, secretion suddenly

increases, reinitiating the growth phase. BAMM 5/16 – p.46/49
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Observations
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• Because the flux is inversely proportional to length, the

amount of FlgM in the cell is a direct measure of the length

of the filament.
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Observations
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• Because the flux is inversely proportional to length, the

amount of FlgM in the cell is a direct measure of the length

of the filament.

• Lesson 5: Because of negative feedback, the cell "knows" to

produce FliC only when it is needed.
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And So it Goes...

What have we seen?

• The combination of diffusion with reactions involving positive

and negative feedbacks enables cells to communicate,

respond to stimuli, and make measurements and decisions.

• Other examples are foraging decisions by ants, size

regulation of cilia by chlamydomonas, size regulation of

mitotic spindle by centrosomes, . . ..

• The mathematical description of these processes has much

in common (i.e., transferable principles) even though the

biological details are vastly different, with the result that

• Mathematics has told us something about how biology

works.
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Thanks!

Thanks to

• Jack Dockery (Montana State)

• Blerta Shtylla (Pomona

College)

• Megan Gorringe-Dixon (Utah)

• Geoffrey Hunter (Toronto)

• NSF

• and YOU for listening!
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