next up previous

The Dilemma:

There can be no direct activation or defibrillation with this (homogeneous) model.

Why? Consider the linearized bidomain model:

\begin{displaymath}
{d \over dx}(\sigma_i {d\phi_i \over dx}) - {\chi \over R_m} \phi =0,
\end{displaymath}


\begin{displaymath}
{d\over dx}(\sigma_i {d\phi_i\over dx} + \sigma_e {d\phi_e\over dx}) =
0,
\end{displaymath}

with

\begin{displaymath}
{d\phi_e\over dx} = -I, \qquad {d\phi_i\over dx} = 0, \qquad{\rm\ at\ } x =
0, L,
\end{displaymath}

so that in steady state

\begin{displaymath}
\phi_s(x) = -I {\sinh({x-{L\over 2}\over \Lambda}) \over \cosh({L\over 2\Lambda})}
\end{displaymath}

where $\Lambda^2 = {R_m\over \chi}{\sigma_i\sigma_e\over \sigma_i + \sigma_e}.$



next up previous