next up previous


1 Dimensional Coupling and Propagation

From Ohm's law

$\displaystyle V_i(x+dx) - V_i(x)$ $\textstyle =$ $\displaystyle -I_i(x) r_idx,$ (1)
$\displaystyle V_e(x +dx) - V_e(x)$ $\textstyle =$ $\displaystyle -I_e(x) r_e dx,$ (2)

In the limit as $dx \rightarrow 0$,
$\displaystyle I_i$ $\textstyle =$ $\displaystyle -{1 \over r_i} {dV_i \over dx},$ (3)
$\displaystyle I_e$ $\textstyle =$ $\displaystyle -{1 \over r_e} {dV_e \over dx}.$ (4)

Next, from Kirchhoff's laws
\begin{displaymath}
I_i(x) - I_i(x+dx) = I_t dx = I_e(x+dx) - I_e(x)
\end{displaymath} (5)

In the limit as $dx \rightarrow 0$, this becomes
\begin{displaymath}
I_t = - {\partial I_i \over
\partial x} = {\partial I_e \over \partial x}.
\end{displaymath} (6)

Using that $V = V_i-V_e$, we find that
\begin{displaymath}
I_t = {\partial \over \partial x}
\left({1 \over r_i + r_e} {\partial V \over \partial
x}\right),
\end{displaymath} (7)

and, thus,
\begin{displaymath}
I_t = p( C_m {\partial V \over \partial t} + I_{\rm ion})=...
...eft({1 \over r_i + r_e} {\partial V \over \partial
x}\right).
\end{displaymath} (8)

This equation is usually referred to as the cable equation.



next up previous