

Introduction to Physiology IV - Coupling and Propagation in Excitable Media

J. P. Keener

Mathematics Department

University of Utah

Spatially Extended Excitable Media

Neurons and axons

Spatially Extended Excitable Media

Mechanically stimulated Calcium waves

Conduction system of the heart

Conduction system of the heart

• Electrical signal originates in the SA node.

Conduction system of the heart

- Electrical signal originates in the SA node.
- The signal propagates across the atria (2D sheet), through the AV node, along Purkinje fibers (1D cables), and throughout the ventricles (3D tissue).

Spatially Extended Excitable Media

The forest fire analogy

Spatial Coupling

Conservation Law:

becomes

 $\frac{d}{dt}(\text{stuff in }\Omega) = \text{rate of transport} + \text{rate of production}$

Question: Can anything interesting happen with coupled cells that does not happen with a single cell?

Normal cell and cell with slightly elevated potassium - uncoupled

Normal cell and cell with slightly elevated potassium - coupled

Normal cell and cell with moderately elevated potassium - uncoupled

Normal cell and cell with moderately elevated potassium - coupled

Who could have guessed? - p.8/22

Normal cell and cell with greatly elevated potassium - uncoupled

Normal cell and cell with greatly elevated potassium - coupled

Axons and Fibers

From Ohm's law

 $V_i(x+dx) - V_i(x) = -I_i(x)r_i dx, \ V_e(x+dx) - V_e(x) = -I_e(x)r_e dx,$

In the limit as $dx \rightarrow 0$,

$$I_i = -\frac{1}{r_i} \frac{dV_i}{dx}, \qquad I_e = -\frac{1}{r_e} \frac{dV_e}{dx}.$$

Coupling and Propagation - p.9/22

The Cable Equation

From Kirchhoff's laws

$$I_i(x) - I_i(x + dx) = I_t dx = I_e(x + dx) - I_e(x)$$

In the limit as $dx \rightarrow 0$, this becomes

$$I_t = -\frac{\partial I_i}{\partial x} = \frac{\partial I_e}{\partial x}.$$

The Cable Equation

Combining these

$$I_t = \frac{\partial}{\partial x} \left(\frac{1}{r_i + r_e} \frac{\partial V}{\partial x} \right),$$

and, thus,

$$C_m \frac{\partial V}{\partial t} + I_{ion} = I_t = \frac{\partial}{\partial x} \left(\frac{1}{r_i + r_e} \frac{\partial V}{\partial x} \right)$$

This equation is referred to as the cable equation.

Modelling Cardiac Tissue

Cardiac Tissue -The Bidomain Model:

• At each point of the cardiac domain there are two comingled regions, the extracellular and the intracellular domains with potentials ϕ_e and ϕ_i , and transmembrane potential $\phi = \phi_i - \phi_e$.

Modelling Cardiac Tissue

Cardiac Tissue -The Bidomain Model:

- At each point of the cardiac domain there are two comingled regions, the extracellular and the intracellular domains with potentials ϕ_e and ϕ_i , and transmembrane potential $\phi = \phi_i \phi_e$.
- These potentials drive currents, $i_e = -\sigma_e \nabla \phi_e$, $i_i = -\sigma_i \nabla \phi_i$, where σ_e and σ_i are conductivity tensors.

Modelling Cardiac Tissue

Cardiac Tissue -The Bidomain Model:

- At each point of the cardiac domain there are two comingled regions, the extracellular and the intracellular domains with potentials ϕ_e and ϕ_i , and transmembrane potential $\phi = \phi_i \phi_e$.
- These potentials drive currents, $i_e = -\sigma_e \nabla \phi_e$, $i_i = -\sigma_i \nabla \phi_i$, where σ_e and σ_i are conductivity tensors.
- Total current is

$$i_T = i_e + i_i = -\sigma_e \nabla \phi_e - \sigma_i \nabla \phi_i.$$

Kirchhoff's laws:

• Total current is conserved: $\nabla \cdot (\sigma_i \nabla \phi_i + \sigma_e \nabla \phi_e) = 0$

Kirchhoff's laws:

- Total current is conserved: $\nabla \cdot (\sigma_i \nabla \phi_i + \sigma_e \nabla \phi_e) = 0$
- Transmembrane current is balanced:

- Total current is conserved: $\nabla \cdot (\sigma_i \nabla \phi_i + \sigma_e \nabla \phi_e) = 0$
- Transmembrane current is balanced:

surface to volume ratio,

- Total current is conserved: $\nabla \cdot (\sigma_i \nabla \phi_i + \sigma_e \nabla \phi_e) = 0$
- Transmembrane current is balanced:

surface to volume ratio, capacitive current,

- Total current is conserved: $\nabla \cdot (\sigma_i \nabla \phi_i + \sigma_e \nabla \phi_e) = 0$
- Transmembrane current is balanced:

surface to volume ratio, capacitive current, ionic current,

- Total current is conserved: $\nabla \cdot (\sigma_i \nabla \phi_i + \sigma_e \nabla \phi_e) = 0$
- Transmembrane current is balanced:

$$\chi(C_{m}\frac{\partial\phi}{\partial\tau} + I_{ion}) = \nabla \cdot (\sigma_{i}\nabla\phi_{i})$$
Extracellular Space
$$C_{m} = \Phi_{i} \Phi_{e}$$
Intracellular Space

surface to volume ratio, capacitive current, ionic current, and current from intracellular space.

φ_i

- Total current is conserved: $\nabla \cdot (\sigma_i \nabla \phi_i + \sigma_e \nabla \phi_e) = 0$
- Transmembrane current is balanced:

$$\chi(C_{m}\frac{\partial\phi}{\partial\tau} + I_{ion}) = \nabla \cdot (\sigma_{i}\nabla\phi_{i})$$
Extracellular Space
$$C_{m} = \bigcap_{i \text{ inn}} \phi_{e} \phi_{e}$$
Intracellular Space

surface to volume ratio, capacitive current, ionic current, and current from intracellular space.

Boundary conditions:

$$\mathbf{n} \cdot \sigma_i \nabla \phi_i = 0, \quad \mathbf{n} \cdot \sigma_e \nabla \phi_e = I(t, x)$$

and $\int_{\partial \Omega} I(t, x) dx = 0$ on $\partial \Omega$.

φ_i

$$\frac{\partial u}{\partial t} = D\frac{\partial^2 u}{\partial x^2} + f(u)$$

with f(0) = f(a) = f(1) = 0, 0 < a < 1.

- There is a unique traveling wave solution u = U(x ct),
- The solution is stable up to phase shifts,
- The speed scales as $c = c_0 \sqrt{D}$,
- U is a homoclinic trajectory of DU'' + cU' + f(U) = 0

Discreteness

Calcium Release through CICR Receptors

Discrete Effects

Discrete Cells

$$\frac{dv_n}{dt} = f(v_n) + d(v_{n-1} - 2v_n + v_{n-1})$$

Discrete Calcium Release Discrete Release Sites

$$\frac{\partial u}{\partial t} = D \frac{\partial^2 u}{\partial x^2} + \frac{g(x)f(u)}{g(x)}$$

Fire-Diffuse-Fire Model

Suppose a diffusible chemical u is released from

- a long line of evenly spaced release sites;
- Release of full contents C occurs when concentration u reaches threshold θ .

$$\frac{\partial u}{\partial t} = D \frac{\partial^2 u}{\partial x^2} + \sum_n Source(x - nh)\delta(t - t_n)$$

Fire-Diffuse-Fire-II

Recall that the solution of the heat equation with δ -function initial data at $x = x_0$ and at $t = t_0$ is

$$u(x,t) = \frac{1}{\sqrt{4\pi(t-t_0)}} \exp(-\frac{(x-x_0)^2}{4D(t-t_0)})$$

Fire-Diffuse-Fire-III

Suppose known firing times are t_j at position $x_j = jh$, $j = -\infty, \dots, n-1$. Find t_n . At $x = x_n = nh$,

$$u(nh,t) = \sum_{j=-\infty}^{n-1} \frac{C}{\sqrt{4\pi(t-t_j)}} \exp(-\frac{(nh-jh)^2}{4D(t-t_j)})$$
$$\approx \frac{C}{\sqrt{4\pi(t-t_{n-1})}} \exp(-\frac{h^2}{4D(t-t_{n-1})}) = \frac{C}{h} f(\frac{D\Delta t}{h^2})$$

Fire-Diffuse-Fire-IV

Conclusion: Propagation fails for $\frac{\theta h}{C} > \theta^* \approx 0.25$ (i.e. if *h* is too large, θ is too large, or *C* is too small.)

With Recovery

Including recovery variables

$$\frac{\partial v}{\partial t} = D \frac{\partial^2 v}{\partial x^2} + f(v, w), \qquad \frac{\partial w}{\partial t} = g(v, w)$$

Solitary Pulse Periodic Waves Skipped Beats

On a Ring

Periodic Ring

Wolff Parkinson White