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BIFURCATIONS AND DYNAMIC COMPLEXITY IN
SIMPLE ECOLOGICAL MODELS

RoOBERT M. MAY AND GEORGE F. OSTER

Biology Department, Princeton University, Princeton, New Jersey 08540; and
Department of Entomology, University of California, Berkeley, California 94720.

Nature is complex. Despite this acknowledged fact, there is a rationale for
constructing oversimplified mathematical caricatures of reality: one hopes
to capture the essence of observed patterns and processes without becoming
enmeshed in the details. This strategy has enjoyed considerable success in
physics and chemistry, and there is a growing literature exploring simple
mathematical models in ecology and debating their usefulness.

It is not our aim to contribute to this debate, as such. Rather we wish to
point out a disconcerting property of many very simple, deterministic models
which allows them to behave in extremely complicated ways.

That simple models can do complicated things is not a new idea: Poincaré
expressed despair of ever completely understanding the motions of even
trivial mechanical systems. Nevertheless, there is still a tendency on the part
of most ecologists to interpret apparently erratic data as either stochastic
“noise’’ or random experimental error. There is, however, a third alternative,
namely, that wide classes of deterministic models can give rise to apparently
chaotic dynamical behavior. It is this third possibility which we elaborate
in this paper.

Although the mathematical underpinnings of the subjects we shall discuss
are still rather esoteric by current standards in ecology, the central notions are
elementary and can be illustrated by simple examples. Therefore we shall focus
on pictorial representations and qualitative arguments. Proofs will either be set
out in appendices (when our material is new) or be found in other cited sources.
Our aim is to alert would-be modelers in ecology to the snake-in-the-math-
ematical-grass called ‘‘bifurcations” and to the subtle and disturbing con-
sequences it can have for the relation between ecological theory and experiment.

In Section I we show how the dynamical behavior of many simple difference
equations goes from a stable point, through a sequence of bifurcations, into
stable cycles of period 2, 4, 8, ..., and finally into a regime of apparent chaos.
This is illustrated with a particular example, but the emphasis is on the generic
character of the process. Section IT develops some of the ecological implications
of the phenomenon; this section is of central importance. Section III notes
briefly that in practice there will ultimately be a fourth regime of behavior,
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F1c. 1.—For a periodically breeding organism with nonoverlapping generations,

the magnitude of the maximum, average, or total population per generation can
be represented by a difference equation of the form N,,1 = F(N,).

namely, certain extinction. Section IV reviews a variety of other studies
(largely numerical) of complicated bifurcation phenomena. Our discussion
focusses mainly on discrete generation difference equation models, but Section
IV makes it clear that the general phenomenon is characteristic of continuous
time models as well (Oster and Guckenheimer 1976), although here the math-
ematical results are considerably more meager. The main results are summarized,
and some biological and mathematical morals drawn, in Section V.

Some of the basic ideas set out in Section I have been outlined very briefly
in an earlier report (May 1974a), and some of the detailed behavior of equations
1 and 2 of table 1 have been explored by Li and Yorke (1975) and by May
(1975). The significance of the present work is its emphasis on generic properties,
the discussion in Sections IT and III, the review in Section IV, and the new
mathematical results incorporated in the two appendices.

I. BIFURCATIONS IN SIMPLE DIFFERENCE EQUATIONS

Preliminaries

One of the simplest population systems is a seasonally breeding organism
whose generations do not overlap. The population history may look something
like figure la. If we are interested only in the maximum, the average, or the
total annual population, we might consider describing the population by a
difference equation of the form

N,y = F(N). 1)

That is, we replace the continuously varying population by a stroboscopic
snapshot at yearly intervals (fig. 10).

A number of such models have been employed in ecology, especially in the
entomological literature. A number of equations of this type are collected in
table 1. They all share the following qualitative features: (1) They are homo-
geneous, i.e., F(N) = Nf(N), so that if the population vanishes 1 yr, it will
remain zero forever after. (2) They often have a critical point, dF/dN = 0,
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TABLE 1

SomME DI1rrFERENCE EQUATIONS, TAXEN FROM BIOLOGICAL LITERATURE,
WaicH CAN EXHIBIT BIFURCATION PHENOMENA

Equation
No. F(N) (See Eq. [1]) Sour:e
| N exp [7(1 — N|K)] Moran 1950; Ricker 1954 ; Macfadyen 1963;
Cook 1965; May 1974b
20 N[1 + »(1 — N/K)] Maynard Smith 1968, 1974; May 1972; Krebs
1972; Li and Yorke 1975; Chaundy and
Phillips 1936
A AN Pennycuik et al. 1968; Usher 1972;
1 + exp [—A4(1 — N/B)] Beddington 1974
4........ AN(1 + aN)~b Hassell 1974 ; Hassell et al. 1976
5., AN Maynard Smith 1974; b = 1, Leslie 1957;
1 + (N/By b = 1, Skellam 1951; b = 1, Utida 1967
6........ AN; ifN < C Varley et al. 1973 (and references therein)
AN1-%; if N > C
Toviiinn, A N f N < K Williamson 1974, with A, > land A_ < 1
A_N; if N > K
8.t N[1/(e + bN) — o] Utida 1957
9.t N ¢(N) #(IN) obtained explicitly from experiments on flies

by Nicholson and others (see Oster et al. 1976)

for some N = N, > 0. This is a reflection of the delayed density dependence of
the population growth: as N increases, eventually the birth rate decreases
and/or the death rate increases; the “hump” in F(XN) implies that this density
dependence has a sufficient time lag so as to produce an overshoot of the
equilibrium. (3) They contain adjustable parameters which affect the shape of
the curve F(N). These parameters represent, inter alia, the net reproductive
rate of the population, which may change from year to year.

Note that if F' has a critical point, it cannot be viewed merely as a finite
version of an ordinary differential equation. A one-dimensional differential
equation system cannot overshoot its equilibrium nor oscillate about it.

If we fix the parameters, then we can plot V,, ; versus N, and obtain a graph
of the function F(XN), as shown in figure 2a. The intersections of F(XN) with the
line N,,,; = N,, the 45° bisector, yield the possible steady states, or equilibrium
points (or, in mathematical language, “fixed points’), N*.

It is easy to plot out the time course of the population by generating the

sequence of points Ny, N, ..., as shown in figure 2b.
If the orbit is started near the fixed point (steady state),
N* = F(N*), (2)

then whether or not the trajectory converges to the equilibrium depends on
the eigenvalues of F' at N* (see, e.g., May 1972). In the one-dimensional case
we are discussing here, the eigenvalue of F at N* is just the slope of I at its
intersection with the 45° line, (dF/dN )y -y« This is shown in figure 3, where we
denote the eigenvalue at the equilibrium by A(x) to emphasize the fact that the
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Fic. 2.—a, A typical form for F(N). The presence of a critical point, dF[dN = 0
(a “hump”), indicates that there is a density dependence sufficiently delayed so as
to produce an ‘“overshoot’ of the equilibrium at N*. b, Plotting the time course
generated by N,,.1 = F(N,): (1) Turn the graph of I on its side so that the N,
axis coincides with the axis of the time plot. (2) Start at N and go horizontally
to the graph of F(N). (3) Go vertically to the 45° line and horizontally to the N,
axis. This is NV;. Extend the line to the time point ¢ = 1. (4) Repeat the process
starting at Ni.

slope of F depends on the value(s) of the parameter(s), o, in F. As figure 3
illustrates,! if the slope of F at N* lies between 45° and —45°, then |A(x)| < 1,
and the fixed point is locally “attracting” (with monotonic damping for slopes

1 This geometrical way of relating the stability of the fixed point to the slope of F(N) at
its intersection with the 45° line has been developed independently by Samuelson (1942),
Ricker (1954), and Moran (1950) (for succinct reviews, see Varley et al. [1973], Clark [1976],
Williamson [1972], or Baumol [1970]). A more algebraic discussion, which aims to relate
the stability character of the fixed point to the underlying biology, is given by May et al.
(1974). In Appendix C the above graphical construction is generalized to the case of time-
dependent equations.
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Fr1e. 3.—The eigenvalue (slope) at N* determines the local stability of the
fixed point F(N) = N: (a) |AM«)] < 1: the fixed point is an “attractor,”
(6) |Ma)] = 1: the fixed point is “neutrally stable,” (c) |A(x)] > 1: the fixed
point is a ‘“‘repellor.”

between 45° and 0°, and oscillatory damping for slopes between 0° and —45°).
As the slope steepens beyond —45°, then [A(x)] > 1, and the fixed point becomes
repelling.

We now focus attention upon what happens to the stability of the fixed
point, and to the dynamical trajectory generated by F, as the parameters are
changed, corresponding to a progressively increasing reproductive rate (or
“biotic potential’’).

Bifurcations: An Example

To illustrate what happens when the parameters in F change, we use the
one-parameter model 1 of table 1:

Xevr = X, exp [7(1 — X,)]

3
= F(X,; r). @

Here we have for notational convenience defined X, = N,/K. Figure 4 shows
F(X; r) for several values of r.

Although we use this particular example in order to give a detailed analysis,
we emphasize that the general character of the dynamical behavior we shall
describe is not specific to this model, but rather is generic to any curve with a
hump whose steepness can be parametrically tuned. That is, our analysis will
depend, in its essentials, only on the general shape of the function F(N).

The fixed point of equation (3) is at X* = 1, and the slope of F(X; r) at X*
is A(r) = 1 — r. Thus the equilibrium is stable if 0 < » < 2. However, as 7
increases past 2, the fixed point changes from an attractor to a repellor.
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F1e. 4.—The equation X,,; = X, exp [r(1 — X,)] for various values of r:
a,r=1;br=2;¢,r =3;d,r = 4.

To see what is happening, we examine the relation between X, and X, ,:

X, 1o = FOX,; 1), )
where
FP(X) = F[F(X)]. (5)

We now examine the fixed points of period 2, X*(?; that is, those points which
are invariant under two iterations of the map F. These points can be located
either by solving the appropriate algebraic equation,

X*(?2) — F(z)[X*(”], (6)

or by graphically iterating F as shown in figure 5.

We see that if F has one hump (one critical point), then F® will have two
humps (two critical points). However, if r < 2 (i.e., the fixed point of F is
stable), then F® will only intersect the 45° line once, as shown in figure 6a. At
r = 2, F® is tangent to the 45° line, and the fixed point is “neutrally stable’ :
small oscillations about it will persist undamped. When r > 2, F(® begins to
develop a “loop,” intersecting the 45° line in three points. As r increases past 2,
the original fixed point becomes unstable and splits into two new fixed points,
X}® and X3®, which move apart as the loop in F® becomes larger with
increasing 7. These new points are initially stable, since the eigenvalue (slope)
of F® at these points has magnitude less than unity. These stable oscillations
of period 2, which alternate between XF® and X¥®, are illustrated in figure 7.

As 7 continues to increase, the humps of F(? become steeper, and the slopes
at X§® and X}® increase until the period 2 points in turn become unstable,
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F1e. 5—To compose F with itself, turn ¥ on its side so that the ordinates and
abscissas correspond. Then follow the arrows as shown to generate the graph of
F2, We see that graphically composing the one-hump map, F, with itself yields
the two-hump map F2. If » > 2, F2 has three fixed points.

when A@[XF®] = [dF?P/dX]y_y!@ < —1. Then they too bifurcate, splitting
into pairs of attracting fixed points of period 4. This can be easily seen by
graphically composing F(® with itself.

If we continue to increase 7, the same process will repeat itself. The graph of
F® when composed with itself will give rise to a graph of F(** which develops
kinks. As the points of period k& become unstable [which happens when the
slope of the intercept of the F® graph on the 45° line, A*), steepens beyond
—45°), the kinks in F®* grow so as to loop through the 45° line, corresponding

/

,______
b e e - -

@) (b) ()

Fi¢. 6.—a, r < 2: original fixed point is stable; b, » = 2: original fixed point
bifurcates; ¢, # > 2; two period-2 attracting fixed points emerge from the original
fixed point which is now a repellor.
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Fie. 7.—When |A(«)| < 1, (r < 2), the difference eq. (3) is stable about X* = 1.
The fixed point becomes unstable and splits into two stable period-2 points as
A(r) increases past 1. The two new fixed points move further apart as  is increased,
until the next bifurcation occurs.

to the period %k points bifurcating into pairs of fixed points with period 2k
[whose stability depends on the eigenvalues, A(*?), of F(29],

This process can be drawn on a “branching diagram’ by plotting the fixed
points versus 7, as shown to the right in figure 7. A more complete picture of the
way increasing r gives rise to a hierarchy of bifurcating stable points of period
1,2,4,8,16,..., is given (for the particular example of equation [3]) in
figure 8. Note that although this bifurcation process produces an infinite se-
quence of cycles with period 2" (n —» o0), the “window” of r values wherein
any one cycle is stable progressively diminishes, so that the entire process is a
convergent one, being bounded above by some parameter value » = r, (which
in the example [3]is r, = 2.6924...).

So far, we have discussed the way the fixed point of F(NV) gives way to a
hierarchy of stable cycles of periods 2". After first pausing to emphasize that
the phenomenon is a generic one, we go on to discuss what happens beyond r,.

The Generic Character of the Bifurcation Process

In Appendix A we give a mathematically rigorous and detailed account of
this bifurcation process for an arbitrary F(N). We see that as the fixed point
“of period 1,” X*, becomes unstable [i.e., as the slope A(X*) steepens beyond
—1], there are born a pair of initially stable fixed points of period 2. More
generally, as any fixed point of period k¥ becomes unstable, it bifurcates to
give two (initially stable) fixed points of period 2£k.

The essential ingredient of the proof consists of the observation that, at any
fixed point of period k, X¥®, the slope of the intercept of F** with the 45°
line, A®V[XF®)], is simply the square of the slope of the intercept of F® with
the 45° line:

HPAFV) = OEFOE, )
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1.5 2.0 r 25 re 3.0

F16. 8a.—The hierarchy of stable fixed points (each pair arising by bifurcation
as a previous point becomes unstable) which are produced as the parameter » of
eq. (3) increases. The sequence of stable cycles of period 2" is bounded by the
parameter value 7.

1.6 T T

{.4r 7

1.3 1 1
2.60 2.65 fe 270 2.75

r

Fie. 86.—A detailed blowup of the bifurcation process, corresponding to that
portion of fig. 8a within the indicated box.
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F1e. 9.—a, Bifurcation when A(r) < —1. b, Bifurcation when A(r) > +1

Thus if the period k cycle is stable, —1 < A% < 1, we have [A®¥| < 1, and
the kink in F® does not yet intercept the 45° line; i.e., we have the generic
character of figure 6a. Conversely, once the points of period & become unstable,
A® < —1, we have [A®)| > 1, and the kink in F®® does intercept the 45°
line, so that the period % cycle bifurcates into one of period 2k; i.e., we have
the generic character of figure 6c¢.

In short, Appendix A shows the behavior illustrated in figure 8 to be a
generic property of “one-hump curves.”

A rapidly convergent scheme for calculating the approximate value of the
parameter corresponding to the upper limit of the bifurcation process, r,, is
also given in Appendix A.

Finally it is important to note that for more general functions than equation
(3) many more complicated things can happen. .

For example, not every new solution must arise from bifurcation from a
preexisting fixed point. This can happen when a “valley” of some iterate of F
deepens and eventually touches the 45° line, or when a “hill” rises to touch
it; a pair of fixed points will then appear on the bifurcation diagram. This is
illustrated in figure 9 and is the crucial difference between bifurcations from
A(r) = +1 (the so-called tangent case, fig. 9b), and those from A(r) = —1
(the so-called slope case, fig. 9a, which is discussed in detail above and in
Appendix A).

Even for equation (3), higher-order cycles can be born by tangent-type
bifurcation. Having appeared, such period & cycles will in turn become un-
stable, giving rise by slope-type bifurcation to cycles of period 2k, 4k, etc.
Some specific examples (e.g., a sequence of stable cycles of periods 3, 6, 12,
24, ..., inhabiting the region 3.196 > r > 3.102, for equation [3]) are noted
in Appendix B.

In dimensions higher than one, the existence of bifurcations to periodic
orbits does not even require the presence of a critical point (hump); bifurcation
can happen with “almost linear’”’ systems.

Beyond r,: Chaos

Beyond the limit point 7, in figure 8 there are an infinite number of periodic
points. As we shall discuss below, only a finite number of these periodic points
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F16. 10.—If d < a (a three-point cycle exists) then there are initial conditions
which generate aperiodic trajectories.

can be stable. Furthermore, there are an uncountable number of points (initial
conditions) whose trajectories are totally aperiodic; no matter how long the
time series generated by F(X) is run out, the pattern never repeats (although
it is bounded above and below; see Section IIT).

Such data is, for all intents and purposes, indistinguishable from a sample
function of a stochastic process! Indeed, when the cycle time becomes suf-
ficiently long it will appear aperiodic unless an extremely long and accurate
series of data points are available. That is, cycle times longer than the number
of data points will not be detectable and can easily masquerade as a stochastic
process. That so simple and biologically reasonable a model can exhibit such
pathology has disturbing implications for mathematical models of more com-
plex systems. Nor is such pathology a mathematical curiosity; it can arise in
innumerable contexts, as we shall discuss in Section IV.

Conditions for the existence of an infinite number of periodic points (and
consequently for the existence of cycles of arbitrarily high order), and for the
existence of asymptotically aperiodic behavior, may be established for any
proposed difference equation, as follows. Starting at the critical point, b, in
figure 10, trace out the postimages ¢ and d and the preimage a, as shown. If
a > d (i.e., d to the left of @) then in addition to an infinite number of periodic
points, the function can generate aperiodic motions. A detailed (set-theoretic)
proof of this theorem is due to Li and Yorke (1975). Biologically, this condition
says that not only is there enough delayed density dependence to cause an
overshoot of the equilibrium point (the fixed point is to the right of the critical
point), but also the overshoot is sufficiently severe to produce a 3-point cycle,
comprising two upward steps, followed by a down. More generally, it may be
seen that Li and Yorke’s proof applies if there exists any cycle with an odd
period, or, indeed, if there is any sequence of k points (a, ..., b, c¢) ascending
toward the critical point, followed by a crash back to a point (d) below the
initial point in the sequence (@ > d); that is, the generalization of figure 10
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which preserves the essential feature that d lies to the left of @. This chaotic
regime sets in beyond the point at which F is first sufficiently humped to produce
an infinite number of periodic points; that is, it begins beyond the critical
parameter value r, of the bifurcation diagram, figure 8.

An intuitive interpretation of these rules can be given in terms of what the
map F does to points in its interval of definition. If the general circumstances
of figure 10 pertain, then there is a subinterval (ab in fig. 10) which is “folded”
under the action of the map (i.e., ab is mapped to bc, and bc is mapped to cd,
as shown in fig. 10). If the map is then iterated, an infinite number of times, an
infinite number of folds are created in the interval oc. By a well-known theorem
from analysis (see, e.g., Smart 1974), there must therefore exist fixed points—
an infinite number of them—in the region of overlap. Furthermore, if the
condition d < a holds, there is an interval (ac in fig. 10) which completely
covers itself under F'; if the map is iterated enough times, it can then be shown
that the union of the domains of attraction of the stable fixed points will not
fill up the interval oc and that the complement of this set must contain, in
addition to the repelling fixed points, aperiodic points. This argument contains
the essentials of the more formal set-theoretic treatment of the consequences
of period 3 by Li and Yorke, and its extensions (e.g., Diamond 1976).

Finally, note that (for any value of 7) although there may be an infinite
number of fixed points, there can be only a finite number of stable fixed points.
A rigorous formulation of this result (and of the arguments presented in the
preceding paragraph) is due to Guckenheimer (1970). In essentials, the proof
follows from the observation that each successive iterate of # crowds twice as
many humps into the same interval, so that the slopes of F*) at its intersections
with the 45° line (i.e., at the period k£ points) must steadily increase with each
iteration. Thus it becomes harder and harder for the eigenvalues at the periodic
points to remain stable. Consequently, there can only be a finite number of
stable periodic points among the infinite number of possible periodic points;
exceptions will occur at limiting parameter values such as ., but such excep-
tions will have measure zero on the interval of » values. That is, after a finite
number of iterates of F, all slopes at the periodic points have magnitude in
excess of unity, and so successive iterates produce only repelling periodic points.
Thus beyond 7, the domain of F must be partitioned into at least two sets of
points: (i) the domain of attraction of the finite number of periodic points, and
(ii) the complement of (i) containing both an infinite number of unstable peri-
odic points and an uncountable number of points which wander aperiodically.

A more detailed exploration of the dynamical behavior in the region beyond
7, is presented in Appendix B.

II. ECOLOGICAL IMPLICATIONS

Note that as r is made very large in equation (3), the hump on the graph of
F grows very large and moves to the left (see fig. 4). An initial condition very
close to zero will take a large number of steps to get away from the origin,
whereupon it will suddenly make a large jump to a very high amplitude, and
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thence crash back to very small amplitude (since the higher the hump, the
faster the curve falls off). The time trajectory will then exhibit the character of
a periodic outbreak: several periods of low, or even undetectable, population
growth until a “threshold” is exceeded, whereupon a large excursion takes
place, followed immediately by a crash back to a very low level. This is evocative
of the apparent behavior of many invertebrate populations (e.g., grasshoppers,
budmoths).

The periodic crashes, however, generally will not return the population to
exactly its initial level. Consequently the cycle will not close on itself, being
exactly periodic, but rather may appear “almost periodic.”” This is analogous
to the orbit traced out on a pool table by a ball whose initial velocity is given
an irrational angle with the sides of the table. The trajectory of the ball will
never be periodic but will cover the entire table, coming arbitrarily close to every
point. However, if the ball is started at a rational angle close to the irrational
angle, then the orbit will be periodic (albeit with a very long period). Moreover,
for a long time the ‘“‘chaotic’ orbit will be close to the periodic one and may
appear nearly periodic. Similarly, the “orbit’’ drawn out on the graph of F
(after the fashion of fig. 2b) can “walk around,” never quite closing to a periodic
trajectory.

As already stressed, the behavior of the simple model (3) as the parameter
is varied is typical. All the models in table 1 can perform identical mathematical
gymnastics. (For a reasonably detailed study of the bifurcation properties of
equation 2 of table 1, see Li and Yorke [1975], or May [1974b]; for equation 4,
see Hassell et al. [1976].)

The implications for ecological theory of these high-order periods and aperiodic
orbits are most unsettling. It means that, from a modeling point of view, it
may well be practically impossible to distinguish data that have been generated
by a rather simple deterministic process either from true stochastic noise or
from “experimental error’’ in sampling or measurements. The decision as to
when sufficiently accurate data have been collected, and whether the data show
purely stochastic or deterministic characteristics, may well have to rest with
one’s biological knowledge external to the experiment, since no discrimination
between the three alternatives can be given on the basis of the data alone.

A simple and startling example of the problem is shown in figure 11. If we
agree to count any point that lands in the left half of the interval as 0 and any
point in the right half as 1 (i.e., round to the nearest integer), then either graph
will generate a sequence of 0’s and 1’s that are indistinguishable from a Bernoulli
process consisting of a sequence of coin tosses! This deterministic process is
equivalent to the simplest stochastic process.

One might think that a simple way out of this dilemma if presented with a
set of apparently unpatterned results would be to try and reconstruct a generat-
ing function for the trajectory by plotting all adjacent pairs (X,, X, ,); that is,
by inverting the direction of the arrows in figure 2b. If a sequence of points was
generated deterministically by a function, F, then certainly F should be re-
constructable by inverting the process. In principle this could work, and,
indeed, should be attempted with any such data. However, in practice this
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F16. 11.—Two functions that generate sample functions of a Bernoulli process.
Remark: The extension of the initial condition in b in base 2 is a sequence of 0’s
and 1’s which is the same as would be generated by the orbit of F.

procedure is unlikely to reproduce F since even small errors in measurement will
“fuzz out” the graph of F. Likewise, even a very tiny amount of stochastic
fluctuation in the value of r will, for large », fuzz out the reconstructed graph
of F. Thus, projecting back pairs of points on the (X,, X, ) plane will generally
produce a cloud of points. Passing a curve through the cloud (by, say, a least-
squares fit) may produce a function, F, whose trajectory will at best approximate
that of F for a short time. Such a procedure is really quite delicate, since F
is good only for the given initial conditions. If the initial conditions are changed
then a completely different trajectory is likely to be traced by F, which may
bear little resemblance to that generated by the true F.

Of course, if the underlying dynamics is either stochastic, or arises from a
deterministic model of higher dimension (e.g., the time trajectory of a host-
parasite system), then the points (X,, X, ) will produce no discernible pattern.

III. EXTINCTION

Notice that, if F(N) has a hump, no matter how complicated the dynamics
may become the population variable has an upper bound. If the critical point
is at N, (i.e., dF/dN = 0 for N = N;), then clearly the population is bounded
above by

Nmax = F(NO) (8)

Apart from possible initial transients, the minimum attainable population
value is in the generation immediately subsequent to the maximum value.
That is, the population is bounded below by

Nmin = F[F(No)] = F(z)(No)- (9)

For example, for equation (3) the critical point is at X, = 1/r, whence the
variable X, is bounded above by X, ., = (1/r) exp (r — 1), and bounded below

max

by Xpin = (1/r)exp 2r — 1 — €71,
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Fic. 12.—Tllustrating a density-dependent difference equation which generalizes
the form illustrated in fig. 2 by incorporating an Allee effect. Populations falling
below the value 4 will be attracted to zero. As indicated on the figure, if the hump
is sufficiently steep, population values in the neighborhood of the critical point
will in the next generation fall below 4, and then head for extinction.

This is all very well if we are interested in the mathematical problem where
N, or X, is a continuous variable, which can be arbitrarily small so long as it
remains positive. But animals come in integer units, and if N were to assume
values less than, or of the order of, unity, then we would expect the population
to become extinct. (More rigorously, a stochastic description in which popula-
tion values assume only integer values is necessary, but the approximation of
treating N as a continuous variable, with extinction certain if N < 1, should
be at least qualitatively accurate.)

Thus we would expect extinction of our model population once F' becomes
so steeply humped that

FO(N) < 1. (10)

Applied to the specific example (3), this implies extinction for 7 in excess of the
value roughly determined by

1/K = (1)r)exp (2r — 1 — €7 1). (11)

Forinstanceif K = 108 thisrequiresr < 3.964 for persistence of the population.
As another example, notice that for the quadratically nonlinear equation 2 of
table 1 the population is bound to go negative, i.e., to become extinct, once
r > 3.

Furthermore, some biological populations display an Allee effect, whereby
population levels decline if they fall below some lower threshold value, 4 say
(see, e.g., Watt 1968 ; Clark 1976). This property, which can arise from a variety
of biological behavioral mechanisms, is illustrated in figure 12. Clearly, in
this event, extinction is likely if

Nmin = F(z)(NO) < 4. (12)
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B0

—

Fic. 13.—Schematic illustration of a double pendulum with nonlinear springs
and the consequent apparently chaotic strip-chart record of its motion.

The previous exposition indicated three general regimes of dynamical
behavior: stable point, stable cycles of period 2", and the complicated (chaotic)
regime beyond r,. Practical considerations dictate the acknowledgment of a
fourth regime, namely, extinction, at yet higher values of r: such extinction
is produced when F(XN) carries population values below some threshold Allee
value, or, at very least, below unity.

IV. OTHER EXAMPLES OF COMPLICATED DYNAMICS PRODUCED BY BIFURCATIONS

The occurrence of complex dynamical behavior is by no means restricted to
simple one-dimensional difference equations.

Here we list a few examples of simple, deterministic physical and ecological
models which exhibit complex behavior of the sort we have described, i.e.,
apparently stochastic dynamics arising from deterministic models.

1. A simple mechanical example. The double pendulum shown in figure 13
is capable of extraordinarily bizarre motions if the springs are nonlinear, a
fact well known to Poincaré. If a stylus were attached to one of the weights,
and a strip chart recording of the motion taken, the output would be, after a
long time, scarcely discernible from noise. The state space lies on a three-
dimensional torus and is one of the simplest examples of a ‘‘strange attractor”
(i.e., neither a point nor a periodic orbit). A picture of the orbits is given in
Arnold and Avez (1970).

2. Fluid mechanics. The equations of fluid mechanics are partial differential
equations which contain a parameter, the Reynold’s number, analogous to 7
in equation (3). As this parameter increases, the fluid flow pattern changes from
a smooth (‘“laminar”) flow to an irregular, turbulent motion that can only be
characterized statistically. This chaotic motion is thought to arise from multiple
bifurcations analogous to, but more complicated than, the situation we have
described for difference equations (see Ruelle and Takens 1971).
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3. Population dynamics. The equations governing a population with age
structure are formally identical in many respects with the equations governing
fluid motion. By varying parameters controlling fecundity, the equations exhibit
bifurcations to multiply periodic orbits which generate a complex spectrum of
“waves” in the age structure (Oster and Takahashi 1974). These periodicities
have a decisive influence on the coexistence of host-parasite populations, which
has been verified in experimental ecosystems (Auslander et al. 1974).

4. Population genetics. The parameter, r, controlling the bifurcations in
equation (3) could be interpreted as the average net reproductive rate of the
population. However, the raw material of natural selection and evolution is the
variation between individuals of a population. We can write an equation
analogous to (3) which takes into account a continuous phenotypic variation
of any quantitative trait (Slatkin 1970; Oster and Rocklin 1976):

Nyl Jf L@ | @y, 2)p(xy, €5)S(2q, N )N (21)S (5, NN (x5) dzy dez,.

(13)
Here we have defined

L(x | x,;, ) = distribution of offspring phenotypes of the parents, ; and x,,

¢(x,, ¥5) = assortive mating function,
S(x;, N) = survivorship of phenotype z;,
N, = fN,(x) dx.

By integrating over phenotypes, we can obtain a difference equation identical
with equation (3). However, the parameter, 7, now is a functional of the pheno-
type distribution, N(x). If we agree to characterize the distribution by its first
two moments, then » = g(u, ¢), where u and ¢ are the mean and variance of
N). If r;, (¢ = 1,2, 3,...) are the bifurcation values of r, then the inverse
image of the r;, g~!(r,), divides the (u, o) plane into disjoint regions, each
characterized by a periodic orbit; i.e., the interval between bifurcation points
on the 7 axis in figures 6-8 now corresponds to two-dimensional regions on the
(i, o) plane. A shift in the phenotype distribution, #, arising from any selective
influence which moves the point (u, o) across one of these boundaries will excite
periodic, or even chaotic, motion. Thus all of the dynamic complexity arising
from multiple bifurcations can be generated from processes, difficult to observe
macroscopically, generated internal to the population. Such dynamics can only
be understood by recognizing the variations between individuals in a population.
(The generation of periodic behavior in populations can have profound effects
on the genetic structure of a population due to the strong selection that occurs
at the minima of the oscillations; see Oster et al. [1976]; Gilpin [1975].)

5. Host-parasite systems. Assuming discrete generations, the host population,
H,, and parasite population, P,, can be modeled by equations of the general
form

H,,, = FH, P, (14)

Py = GH, P (15)
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Such systems can also show the continuum of behavior from stable points,
through stable cycles, to a chaotic regime. Preliminary studies by Beddington
et al. (1975) suggest the bifurcation phenomenon and attendant complications
arise more readily than in our one-dimensional examples.

6. Competing species. Similarly, systems of two competing populations
show this range of behavior. One example is the pair of equations

X, = X, exp[r(l — X, — a))],

(16)
Yio1 = Yyexp [ry(l — Y, — BX,)].

Again it appears that bifurcations, and consequent chaotic behavior, are
attained for smaller » values than for the corresponding simple one-dimensional
systems (Hassell and Comins 1976; May 1974a).

7. Quadratic nonlinearities in #» dimensions. In an interesting and extensive
series of numerical experiments, Ulam (1963) has explored three- and four-
dimensional systems of difference equations with quadratic nonlinearities. He
noted the chaotic dynamics which ensued once the nonlinearities were suf-
ficiently strong and went on to map out the state space ‘‘probability distribution”
consequent upon such apparently stochastic behavior.

8. The Fermi-Pasta-Ulam (FPU) problem. This concerns the apparently
chaotic aspects of the oscillations of a linear array of » mass points (z > 1),
with neighbors coupled by springs which have very weak nonlinear terms. The
problem by now enjoys a large literature of numerical studies: a recent review
and bibliography is by Tuck and Menzel (1972).

The bulk of this paper has dealt with the complicated bifurcation processes
which can occur in a one-dimensional system once the nonlinearities are suf-
ficiently strong. The FPU problem represents the opposite end of a spectrum
of possible models and shows the same chaotic dynamical behavior, in this case
for a high-dimensional system with almost inperceptible nonlinearity. From
this, and other studies of intermediate-dimensional systems (two-, three- and
four-dimensional systems such as examples 5-7 above), we conjecture that the
sort of complications seen above for large r in single-species systems can arise
even more easily in multispecies systems.

V. DISCUSSION

It has been shown, very generally, that a density-dependent relation of the
form illustrated by figure 2 will lead to dynamical behavior which (as the hump
in the F curve steepens) goes from a stable point, through a bifurcating hierarchy
of stable cycles of period 2", into a region of chaotic behavior, and finally leads
to extinction for very steep curves.

Since such nonlinear difference equations are appropriate to many real-life
situations, and particularly to temperate-zone insect populations, these prop-
erties have ecological implications. Some of these are developed in Section II.
In particular, we emphasize that data indicating complicated population fluctua-
tions do not necessarily testify to environmental stochasticity, nor to random
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experimental error, but can arise from simple and rigidly deterministic density-
dependent mechanisms.

The detailed biological implications for the analysis of data pertaining to
single-species populations remain to be explored. Southwood (1975) has given
an account of some of the general implications, particularly for invertebrate
ecology. Hassell et al. (1976) have analyzed a large array of life tables for species
in a variety of taxonomic categories, fitting this data to the two-parameter
density-dependent relation of equation 4 of table 1: most of these populations
appear to be in the stable point region, or, at worst, in the region of two- or
four-point cycles. There are, however, considerable difficulties in this kind of
data analysis, and these conclusions should only be regarded as tentative.

As pointed out in Section II, fine mathematical points as to whether we have
a cycle of very long period, or totally aperiodic motion, are of little biological
relevance: both will appear chaotic (or perhaps almost periodic). However,
these and other such things are of intrinsic mathematical interest. The bifurcation
diagram in figure 8 is itself of considerable pedagogic value as an explicit example
of a bifurcation process in a very simple system. Similarly the algorithm for
calculating 7, (the limit of the bifurcations) and some details of the behavior as a
function of r beyond 7, are new results of mathematical interest. These aspects
of our work are developed in Appendix A-Appendix C.

Indeed, on a pedagogic note, it could be argued that a study of very simple
nonlinear difference equations such as equations 1 and 2 of table 1 should be
part of high school or elementary college mathematics courses. They would
enrich the intuition of students who are currently nurtured on a diet of almost
exclusively linear problems.

Section IV reviews several other examples of complicated dynamical behavior
arising from bifurcation processes. Although most of these examples are not as
well understood as our simple one-dimensional model, they suggest that such
apparently chaotic dynamics is ubiquitous phenomenon, and that it can arise
more readily (with weaker nonlinearities) in systems of higher dimensionality.

VI. SUMMARY

Many biological populations breed seasonally and have nonoverlapping
generations, so that their dynamics are described by first-order difference
equations, N,,, = F(N,). In many cases, F(XN) as a function of &V will have a
hump. We show, very generally, that as such a hump steepens, the dynamics
goes from a stable point, to a bifurcating hierarchy of stable cycles of period
2", into a region of chaotic behavior where the population exhibits an apparently
random sequence of “outbreaks” followed by “crashes.” We give a detailed
account of the underlying mathematics of this process and review other situa-
tions (in two- and higher dimensional systems, or in differential equation
systems) where apparently random dynamics can arise from bifurcation
processes.

This complicated behavior, in simple deterministic models, can have disturb-
ing implications for the analysis and interpretation of biological data.
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APPENDIX A

As a stable cycle of period £ becomes unstable, it bifurcates into an initially stable
cycle of period 2k. In this Appendix we discuss how this comes about and show what
the limits are to this process.

Suppose we have a k-point cycle, touching the fixed points NF® (with ¢ =
1, 2,..., k) which are the solutions of

N*® — F(")[N*(")]. (A1)

The stability-determining eigenvalues A% are given by the slope of F® at these
points:

AB[NF®] = [AF®(N)/dN]y_ NGO (A2)

By applying the chain rule, it can readily be seen that this reduces to
k
A® = [ [dF(N)/dN]y- NHG (A3)
=1

(Samuelson 1947; Li and Yorke 1975). So the derivative of the k-times-composed
function F® can be replaced by the product of the derivatives of F at the & fixed
points. It follows that the slope A% is necessarily the same at all k fixed points. As
illustrated in figure 14a,if 1 > A® > —1, the k-point cycle is at least locally stable,
while if ® < —1 (or >1) the cycle becomes unstable.

Next consider the map of F®, Clearly the fixed points of period k, NF®, are
solutions of the equation

N = FEO(N) = FOIFO(N)]. (A4)

That is, the k-point cycle is a degenerate case of a 2k-point cycle. The slope of F20
at these period k fixed points, A?P[N*®], is given by

/1‘2")[1\7*"‘)] = [dF(zk)(N)/dN]N=N‘(k)
{[dF® ANy prao } (A5)
{l(k)[N*(")] }2_

Il

I

Thus if the k-point cycle is stable, [A%’] < 1 and therefore 1 < 1 [the slope of
F@0 is less than 45°]. The situation is depicted by the dashed curve in figure 14b,
where no nondegenerate 2k-point cycle yet exists: i.e., the kinks in the map of F(Z0
do not yet intercept the 45° line. However, when the k-point cycle becomes unstable,
[A®] > 1 and consequently A% > 1 [the slope of F*® exceeds 45°]. We now have
the situation depicted by the solid curve in figure 14b where two new points of period
2k appear. That is, as a period k point becomes unstable, it necessarily bifurcates
to two new points, which are initially stable points of period 2k. There will be 2k
such points, which we denote by NJ©®® (3 = 1, 2,..., 2k).
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(a) F(k) (b) F(Zk)

Niak Nt+2k \ N

N*(k) N*(Zk) Ni(k) N*(Zk)
N, Ny

F1c. 14.—a, The dashed curve illustrates the map of F® (relating N, , to N,)
in the neighborhood of one of its period & fixed points, N*®; here the slope of
F® at its insection with the 45° line, A%), has |A%®| < 1, and the point is stable.
For the solid curve |A®¥| > 1, and the fixed point becomes unstable. b, This
figure illustrates the corresponding maps of F(2® (relating N,,2; to N,), in the
neighborhood of the same period k fixed point, N*®. The consequent features
are as discussed in the text. Note that A5?®) is defined as the slope of F(2¥ at N*®),
and A2 as the slope at the newly bifurcated period 2k fixed points, N*(2¥ (which
arise once [A®] > 1, eq. [A5]).

This mechanism is clearly generic. Starting from any one-hump map, F, the
bifurcation process gives rise to a succession of stable cycles of periods 1, 2, 4,
8,...,2" ..., as typified by figure 8. Equally well, beyond r, there can be locally
attractive fixed points of period k£ which, as F continues to steepen, lead to bi-
furcating sequences of stable cycles with periods k, 2k, 4k,..., 2"%,... (e.g.,
356—>12->524,...,0r5 > 10 > 20 - 40,... ; see Appendix B).

An interesting number is the limiting parameter value for any such sequence of
bifurcations. For example, consider the parameter sequence shown in figure 8.
One way to find 7, is simply to compute the » value at which instability sets in for
cycles of successively higher orders (e.g., 512; 1,024 ; 2,048). This is a straightforward
but tedious task.

To concoct an analytic approximation it is first helpful to introduce some com-
pact notation. For the parameter value 7, let A¥)(r) denote the slope of F® at any
one of the period k fixed points, N}® (i.e., eq. [A3]); similarly, let 220 (r) denote
the slope of F?® at any one of the period 2k fixed points, N;*2® (if they exist); and
finally let 1,%(r) denote the slope of F'®® at the period k fixed points, N}® (i.e.,
eq. [A5]). Figure 14 aims to clarify this. Now if we could relate 12 (r) to A®(r),
the condition for instability of the period 2k cycle could be expressed in terms of
the slope (already steeper than — 1) at the period k fixed points.

For relatively large k, an approximate such relation is (see proof below)

ACOE) ~ 3 — 2040 ()2 (A8)

Thus A® = —1 implies, approximately, that A® = —+/ 2. By extension, we can
relate the condition for instability of the period 2"k cycle to the slope at the con-
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TABLE 2

COMPARISON BETWEEN EXAcCT VALUES OF 7., AND APPROXIMATIONS BASED ON
EqQuaTion (A9), FOrR DIFFERENCE EQUATIONS 1 AND 2 oF TaABLE 1

Approximation Based on Cycle For Eq. (1) of Table 1
of Period k: #,(k) (i.e., Eq. [3]) For Eq. (2) of Table 1

Bom L, #o(L)eeerneennennnnennn, 2.50 2.50

E=2, 7:(2)cciiiiiiiiiiiiiiiiine, 2.667 2.550
R X 7 MU 2.686 2.566
Bom 8, Fol8)errrneneenaenannniins 2.691 2.569
Bom 16, Au(16)eevenrieneeeannnnnns 2.6921 2.5697
B=32 A(32). .., 2.6923 2.5699

Exact value, ¢« oo vvieniiennannn 2.6924 2.5700

siderably simpler fixed points of period k. The limiting parameter value, 7, is
defined for any such sequence of bifurcations as that value of » such that
lim A@0@) = —1. (A7)

n-» o0

It only remains to relate this limiting slope at the period 2"k points to the slope at
the period & points. This is accomplished via repeated applications of the approx-
imate equation (A6):

AO@) = (33 + [33 + [+ 33 — AZW0@) - - V]2, (A8)
(The square roots are all to be taken negatively.) The result, in the limit n —» o0, is
A®(r) ~ —1.5. (A9)

In this way 7, can be estimated in terms of the properties of relatively low-order
(period k) cycles in the sequence.

The efficacy of this approximation scheme is illustrated in table 2. This table
refers to the difference equations 1 (i.e., eq. [3]) and 2 of table 1 and compares the
exact value of the limit to the bifurcating cycles of period 2", ., with the successively
more accurate approximations #,(1), #,(2), . . ., #.(32) obtained by applying equation
(A9) to the cycles of period 1, 2,..., 32, respectively. The approximation is seen
to be qualitatively accurate even if based on the slope of the single fixed point of F,
and adequate for most practical purposes by the time &k = 4 or 8. This analytic
approximation to 7, is especially useful for finding the limiting parameter values in
difference equations with two or more parameters, such as equation 4 of table 1.

Proof of the approximate equation (A6). For relatively large k, we expand F@0 in
a Taylor series to third order about the point N*®:

FEO[N*® 4 o] ~ N*¥® 4 Ay + 1By? + 10y°. (A10)

The expansion needs to be carried at least to order y3 to account for the qualitative
shape of F®® in the neighborhood of N*® (see fig. 14b); that is, in order to describe
bifurcation into a pair of points, one on either side of y = 0. Remembering that

FEO[N*® 4 4] = FOLFOIN*® L o]} = FOIN*® 4 J0y 4 ... (All)

we can express the coefficients 4, B, ete., in terms of derivatives of the lower-order
map F®, In this way, we have already shown in equation (A5) that

A = [A®72, (A12)
Similarly,
B = [A®][1 + A®d2F® /AN ]y _yror. (A13)
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Notice that the fixed points of period %k bifurcate at A®(r) = —1, so that for r
just beyond this value A ~ 1 and B ~ 0.

For the fixed points of period 2k, we write N*0 = N*® L 4% (see fig. 14b).
The values of y* are then determined by

y* = Ay* + 3B@*)? + 30> (Al4)
Apart from the degenerate period k solution, y* = 0, there is a pair of solutions
given by '

0~ (4 — 1) + By* + 3C(y*)> (A15)

Note that these solutions are real if, and only if, 4 > 1 (i.e., [A®| = 1), in accord
with the detailed discussion given earlier. Next, the slope at these period 2k fixed
points is

B0 = [dF0[dy],_ « ~ A + By* + 10(y*)% (A16)
Using equation (A15), this can be simplified to
AC0 ~ (3 — 24) — L1By*. (A17)

The quantity y*, which represents the distance between the unstable period &
point and the initially stable period 2k point [y* = N*Z0 _ N*®] will be small
even for moderate values of k, and will be very small for large k: figure 8 makes this
plain. In addition, the coefficient B is zero when the bifurcation first occurs (see
eq. [Al13]). Thus, to a first approximation, the correction term 3By* may be
neglected in equation (Al7): after eliminating A by use of equation (Al2) one
arrives at the approximation (A6). Rather than undertake an explicit evaluation of
the correction terms in this approximation for large k, we instead take the empirical
view of referring to table 2.

APPENDIX B

Beyond the critical value, 7,, of figure 8, we enter the regime termed by Yorke
‘“chaotie,” characterized (for essentially all values of r) by a finite number of
attracting fixed points, an infinite number of repelling fixed points, and an uncount-
able number of asymptotically aperiodie initial conditions. As discussed in Section
II, from a biological point of view it is essentially irrelevant whether the solution is
aperiodic or periodic with long period: these are likely to be indistinguishable in
practice, and small fluctuations in » or in data collected are likely to blur the dis-
tinetion, even if it did exist.

Despite their biological irrelevance, the mathematical details of the dynamical
behavior in the chaotic regime are curious, and we discuss them briefly in this
Appendix.

It is difficult to make sense of numerical simulations of equations such as (3)
without this understanding.

How many fixed points are there with period k£? As the map of F becomes more
and more steeply peaked, it becomes a one-dimensional analogue of the ‘‘horseshoe”
map of Smale (Smale 1967 ; Hirsch and Smale 1974). Were it a true horseshoe (which
it cannot be on R!), it is easy to prove that there are 2* fixed points of period k.
Thus for large r, as F becomes very peaked, we may anticipate realizing 2* fixed
points of period k, at least for values of k& which are not too large. An equivalent
way of framing this argument is to note that composing & one-hump map with itself
produces a map, F®, with two humps (cf. fig. 5); composing with F(-) once again
produces a map, F®, with four humps; ete. As each successive composition doubles
the number of humps, the map of F® will have 2¢~! humps. If all these humps and
valleys are sufficiently steep (which they increasingly tend to be as » increases),
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TABLE 3

r VALUES LEADING TO VARIOUS HIGHER-ORDER HIERARCHIES OF
StABLE CycLEs IN EqQuUATION (3)

Subsequent Hierarchy

k, Period of of Periods 2"k
Basic Cycle Originates at 74 Goes Unstable at rp Bounded by 7,
1 (see fig. 8) ........ 0 2 2.6924
S 3.1024 3.1596 3.1957
4. 3.5855 3.6043 3.6153
B (ArSE). .ot 2.9161 2.9222 2.9256
5 (second) .......... 3.3632 3.3664 3.3682
5 (third)............ 3.9206 3.9295 3.9347

there will be 2 points of intersection with the 45° line (i.e., 2¥ period % fixed points).

It is instructive to examine how these 2 fixed points are organized, for some
specific values of k.

1. For k = 1, we have 2! = 2 possible fixed points, namely, the trivial solution
N* = 0, and the nontrivial fixed point N* of figure 2.

2. For k = 2, we have 22 = 4 possible fixed points, namely, the two fixed points
of period 1, and the two period 2 fixed points arising from the slope-type bi-
furcation at N* (fig. 8).

3. Fork = 3, we have 23 = 8 possible fixed points. These are the invariable two
period 1 fixed points of 1, together with a pair of 3-point cycles which are born
simultaneously (one being initially. stable, the other unstable from the outset), by a
tangent-type bifurcation, as the humps and valleys of F® steepen for larger r. As
r increases further, the slope of F® at the (initially attractive) period 3 fixed points
steepens, and the stable 3-point cycle gives way to a bifurcating hierarchy of stable
cycles of period 3, 6, 12, 24,..., 3 x 2k. Just as for the basic sequence illustrated
by figure 8, this sequence will be bounded by some limiting value of , and this
spectrum of solutions will occupy some finite window of » values in the chaotic
regime.

4. For k = 4, we have 2% = 16 possible fixed points. Of these, eight are the
four fixed points of period 2 from 2, along with the four points arising from slope-
type bifurcation of the 2-point cycle (fig. 8). The remaining eight arise as a pair of
4-point cycles coming from a tangent-type bifurcation at larger »: as always happens
in this event, one such cycle is stable when it first appears, the other unstable from
the outset.

5. For k = 5, we have 2% = 32 possible fixed points. These are now the two
period 1 points of 1, together with three distinct pairs (one unstable, one initially
stable) of 5-point cycles: 2 + 3(5 + 5) = 32.

This analysis can be extended ad nauseam. For example, for £ = 11 we have
211 = 2,048 possible fixed points, which can be sorted out as the two period 1
fixed points of 1, together with 93 distinct pairs of 11-point cycles, all of which can
be realized if r is sufficiently large. [Indeed, in this way one can prove the amusing
number-theoretic result that (2¢~! — 1) is divisible by & if % is prime.]

By way of illustration of these generic results, table 3 gives the windows of »
values wherein are located the stable cycles of periods 3, 4 (from tangent-type
bifurcation), and 5, for the difference equation (3). For each case, we give the r value
(r,) at which that stable k-point cycle first appears; the » value (rp) at which it
becomes unstable, giving rise by slope-type bifurcation to a hierarchy of stable
(2"k)-point cycles; and the subsequent r value (r,) which puts an upper limit on this
bifurcation process. In brief, table 3 is a summarized version of figure 8 for higher-
order cycles originating from tangent-type bifurcations. Numerical studies suggest
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(&)

b)

Fi1c. 15.—If the parameter « in the general difference equation (1) itself varies
periodically, as shown here in (a) for T = 2, then the graphical analysis of the
dynamical behavior is carried out along the lines illustrated in (b). For details,
see the text.

that within these windows of » values the appropriate cycles attract essentially all
initial points (the exceptions being a class of measure zero which belong to the
infinite number of unstable fixed points or the uncountable number of aperiodic
trajectories).?

Although these results are of intrinsic mathematical interest, the fact that
numerical simulations shed little light on them is an excellent measure of their
biological irrelevance. Cycles with long periods are for all practical purposes in-
distinguishable from chaos. This reechoes the caveats issued in the first paragraph
of this Appendix.

APPENDIX C

The graphical method described in Section I can be extended to the case where
the parameter « is itself a periodic function: a,, ; = a,. For example, suppose «,
varies periodically as shown in figure 15a. Then, we plot two copies of Fa,(Xt)“
one for each value of the parameter—and alternate the steps between the two
curves as shown in figure 15b. If ¢, has period 7' then T' copies of F, (X,) must be
drawn.

2 Two recent accounts, which are both more complete and more mathematically detailed,
are Guckenheimer et al. (1976) and May (1976).
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The local stability of the fixed point cannot be determined by computing the
eigenvalue except in special cases. For example, the condition for local stability of
equation (3) is:

T-1

[T a-rl <t

k=1

[In general, the linear stability condition for the difference equation X,,, = 4,X,
is ||®(ty, t)]| < M, where @(¢y, t) is the state transition matrix.] At the opposite
extreme, when the 7, values constitute a random sequence, the above stability
criterion must be averaged, i.e., (n(l — 7)) < 1. If, in addition, the », are un-
correlated, {(m(1 — 7)) = 1 — (r;), the stability is guaranteed when (r,) < 2.
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