The table below summarizes the results of platelet simulations using RBF interpolants to compute forces within the immersed boundary (IB) method. The renders column lists two kinds of renders: those that color platelets by computing forces using RBFs (rbf) or a piecewise linear interpolant (ldsm).
The domain is a 16 μm × 16 μm × 16 μm cube. The initial flow is a (mock) shear flow. IDs beginning with "l" (for lightspeed) have Dirichlet boundaries in the z direction which maintain the shear flow. IDs beginning with "c" (for cleopatra) are triply periodic, and a background force is added to maintain the mock shear flow.
id | W | ɣ̇ s-1 |
G dyn/cm |
K dyn/cm |
κ erg |
k | Tend | frames | renders | |
---|---|---|---|---|---|---|---|---|---|---|
l8 | WnH | 50 | 1×10-1 | 0 | 0 | 1 μs | 300 μs | 31 | rbf | ldsm |
c12 | WnH | 50 | 1×10-1 | 0 | 0 | 1 μs | 300 μs | 31 | rbf | ldsm |
l9 | WnH | 50 | 1×10-1 | 0 | 0 | 100 ns | 1.2 ms | 13 | rbf | ldsm |
c13 | WnH | 50 | 1×10-1 | 0 | 0 | 100 ns | 1.2 ms | 13 | rbf | ldsm |
l10 | WnH | -50 | 1×10-1 | 0 | 0 | 1 μs | 300 μs | 31 | rbf | ldsm |
c14 | WnH | -50 | 1×10-1 | 0 | 0 | 1 μs | 300 μs | 31 | rbf | ldsm |
l11 | WnH | 50 | 1×10-3 | 0 | 0 | 1 μs | 10 ms | 101 | rbf | ldsm |
l12 | WnH | 50 | 1×10-3 | 1×10-2 | 0 | 1 μs | 5.4 ms | 55 | rbf | ldsm |
l13 | WnH+Wb | 50 | 1×10-3 | 0 | 2×10-13 | 1 μs | 10 ms | 101 | rbf | ldsm |
l14 | WnH+Wʹb | 50 | 1×10-3 | 0 | 2×10-13 | 1 μs | 10 ms | 101 | rbf | ldsm |
l15 | WnH+Wb | 50 | 1×10-3 | 0 | 2×10-13 | 1 μs | 10 ms | 101 | rbf | ldsm |
$$ W_\text{nH} = G\left(\frac{I_1}{\sqrt{I_2}}-2\right) + K\left(\sqrt{I_2}-1\right)^2 $$ Let \(\Phi = 2\partial W/\partial I_1\) and \(\Psi = 2\partial W/\partial I_2\). $$ \pmb{F}\Big|_{\pmb{X}_\alpha} = - \frac{\partial \mathcal{E}}{\partial \pmb{X}_\alpha} = -\sum_{\triangle\ni\pmb{X}_\alpha} \int_\triangle \left(\frac{1}{2} \left[\Phi \hat{g}^{ij} + I_2 \Psi g^{ij}\right]\frac{\partial g_{ij}}{\partial \pmb{X}_\alpha}\right) d\hat{A} $$ $$ \pmb{F} = - \frac{\delta \mathcal{E}}{\delta \pmb{X}} = \frac{1}{\sqrt{\hat{g}}}\frac{\partial}{\partial\theta^j}\left(\sqrt{\hat{g}}\left[\Phi \hat{g}^{ij} + I_2 \Psi g^{ij}\right]\frac{\partial \pmb{X}}{\partial \theta^i}\right)d\hat{A} $$