Name

\qquad

1. [10 pts.] Solve the following nonlinear IVP explicitly for $y(x)$

$$
\frac{d y}{d x}=\frac{x-5}{y^{2}} \quad y(0)=2 .
$$

2. [10 pts.] Find the general solution to

$$
\frac{1}{x} \frac{d y}{d x}-\frac{2}{x^{2}} y=x \cos x, \quad x>0
$$

3. [20 pts.] Blood plasma is stored at $40^{\circ} \mathrm{F}$. Before the plasma can be used, it must be at $90^{\circ} \mathrm{F}$. When the plasma is placed in an oven at $120^{\circ} \mathrm{F}$, it takes 45 min for the plasma to warm to 90°. How long will it take for the plasma to warm to $90^{\circ} \mathrm{F}$ if the oven temperature is set at $100^{\circ} \mathrm{F}$?

Hints: $\frac{d T}{d t}=k(A-T)$, here $A-T>0$. Solve the DE symbolically, i.e. don't replace A with a number until after you have found the general solution $T(t)$.
4. [15 pts.] Use Elimination (you may use Gaussian Elimination on the augmented matrix) to find the solution set of the following linear system of equations:

$$
\left\{\begin{align*}
x+2 y+z & =4 \tag{1}\\
3 x+8 y+7 z & =20 \\
2 x+7 y+9 z & =23
\end{align*}\right.
$$

5. [15 pts.] A brine solution of salt flows at a constant rate of $4 \mathrm{~L} / \mathrm{min}$ into a large tank that initially holds 100 L of water with 5 kg of salt dissolved in it. The solution inside the tank is kept well stirred and flows out of the tank at a rate of $4 \mathrm{~L} / \mathrm{min}$. If the concentration of salt in the brine entering the tank is $0.2 \mathrm{~kg} / \mathrm{L}$, determine the mass of salt in the tank after t min. Let $x(t)$ represent the amount of salt in the tank at time t, measured in kg.
6. [10 pts.] Use Euler's method to approximate a solution to the IVP:

$$
\frac{d y}{d t}=t \cdot y \quad y(0)=2
$$

with a step size of $h=0.5$ from $t_{0}=0$ to $t_{f}=2$. Recall:

$$
\begin{aligned}
\frac{d y}{d t} & =f(t, y) \quad y\left(t_{0}\right)=y_{0} \\
t_{n+1} & =t_{n}+h \\
y_{n+1} & =y_{n}+\underbrace{f\left(t_{n}, y_{n}\right) \cdot h}_{\Delta y}
\end{aligned}
$$

Fill in the shaded blanks in the following table:

| n | t | y | $f(t, y) \cdot h=\Delta y$ |
| :---: | :---: | :---: | ---: | :--- |
| 0 | 0 | 2 | $(0 \cdot 2) \cdot 0.5=0$ |
| 1 | 0.5 | 2 | $(0.5 \cdot 2) \cdot 0.5=0.5$ |
| 2 | 1.0 | | $(1.0 \cdot 2.5) \cdot 0.5=1.25$ |
| 3 | 1.5 | 3.75 | $(1.5 \cdot 3.75) \cdot 0.5=$ |
| 4 | 2.0 | | |

7. [20 pts.] True or False. Circle one.
(a) $\mathrm{T} \quad \mathrm{F}$ A solution to a differential equation must be a differentiable function.
(b) T F The general solution to a differential equation is actually an infinite family (set) of solutions.
(c) $\mathrm{T} \quad \mathrm{F}$ If an equation is separable then it is linear.
(d) $\mathrm{T} \quad \mathrm{F}$ If an equation is autonomous then it is separable.
(e) $\mathrm{T} \quad \mathrm{F}$ The equation $y y^{\prime}=x$ is linear.
(f) $\mathrm{T} \quad \mathrm{F}$ The equation $y^{\prime}=\sin (x) y+2 x$ is linear.
(g) $\mathrm{T} \quad \mathrm{F}$ The equation $y^{\prime \prime}+\sin y=0$ is linear.
(h) T F The matrix

$$
\left[\begin{array}{lllll}
0 & 1 & 7 & 2 & 1 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

is in reduced row-echelon form (RREF).
(i) $\mathrm{T} \quad \mathrm{F}$ The matrix

$$
\left[\begin{array}{ll}
2 & 2 \\
0 & 1 \\
0 & 0 \\
0 & 0
\end{array}\right]
$$

is in row-echelon form (REF).
(j) T F If an IVP has a solution then that solution must be unique.
8. [5 points (bonus)] Use geometry to determine a first order differential equation whose family of solution curves are concentric circles centered on the origin.

Scratch Paper

Question:	1	2	3	4	5	6	7	8	Total
Points:	10	10	20	15	15	10	20	0	100
Bonus Points:	0	0	0	0	0	0	0	5	5
Score:									

