MATH 4200-1 FALL 2008 Second Mock Exam

INSTRUCTOR: H.-PING HUANG

LAST NAME	
FIRST NAME	
ID NO.	

INSTRUCTION: SHOW ALL OF YOUR WORK. MAKE SURE YOUR ANSWERS ARE CLEAR AND LEGIBLE. USE **SPECIFIED** METHOD TO SOLVE THE QUESTION. IT IS NOT NECESSARY TO SIMPLIFY YOUR FINAL ANSWERS.

PROBLEM 1	25	
PROBLEM 2	25	
PROBLEM 3	25	
PROBLEM 4	25	
PROBLEM 5	25	
TOTAL	125	

(25 pt) Find a path γ which traces once around the triangle with vertices 0, 1, *i* in the counter-clockwise direction, starting at 0. For this path γ , find $\int_{\gamma} \overline{z} dz$.

Is it generally true that

$$\overline{\int_{\gamma} f(z) dz} = \int_{\gamma} \overline{f(z)} dz?$$

 $(25~{\rm pt})$ Use Cauchy's formula to show that

$$\int_{|z-1|=1} \frac{1}{z^2 - 1} dz = \pi i, \quad \int_{|z+1|=1} \frac{1}{z^2 - 1} dz = -\pi i.$$

Hint: use a partial fraction decomposition of the integral.

(25 pt) Prove that if f is analytic on the disc $D_R(z_0)$ and $|f(z)| \leq M$ on $D_R(z_0)$, the $|f'(z_0)| \leq M/R$.

Suppose $p(z) = a_3 z^3 + a_2 z^2 + a_1 z + a_0$ is a polynomial of degree 3. If $|p(z)| \le 1$ on the unit circle $\{z : |z| = 1\}$, then show that $|a_3| \le 6$.

(25 pt) Prove that if f is an entire function which satisfies $|f(z)| \ge 1$ on the entire plane, then f is constant.

Prove that if an entire function has real part which is bounded above, then the function is constant.

(25 pt) Show that if f is a non-constant analytic function on a connected open set U and if f has no zeroes on U, then there are no points of U where |f(z)| has a local minimum.

Show that if f is a non-constant, continuous function on $\overline{D_1}(0)$, which is analytic on $D_1(0)$ and |f(z)| = 1 for all z on the unit circle, then fhas a zero somewhere in $D_1(0)$.