MATH 4200-1 FALL 2008 Second Mock Exam

INSTRUCTOR: H.-PING HUANG

\qquad
LAST NAME
FIRST NAME
ID NO.

INSTRUCTION: SHOW ALL OF YOUR WORK. MAKE SURE YOUR ANSWERS ARE CLEAR AND LEGIBLE. USE SPECIFIED METHOD TO SOLVE THE QUESTION. IT IS NOT NECESSARY TO SIMPLIFY YOUR FINAL ANSWERS.

PROBLEM 125 —

PROBLEM 225 _

PROBLEM 325 _

PROBLEM 4 \qquad

PROBLEM $5 \quad 25$ _

TOTAL 125 \qquad

PROBLEM 1

(25 pt) Find a path γ which traces once around the triangle with vertices $0,1, i$ in the counter-clockwise direction, starting at 0 . For this path γ, find $\int_{\gamma} \bar{z} d z$.

Is it generally true that

$$
\overline{\int_{\gamma} f(z) d z}=\int_{\gamma} \overline{f(z)} d z ?
$$

PROBLEM 2

(25 pt) Use Cauchy's formula to show that

$$
\int_{|z-1|=1} \frac{1}{z^{2}-1} d z=\pi i, \quad \int_{|z+1|=1} \frac{1}{z^{2}-1} d z=-\pi i .
$$

Hint: use a partial fraction decomposition of the integral.

PROBLEM 3

(25 pt) Prove that if f is analytic on the disc $D_{R}\left(z_{0}\right)$ and $|f(z)| \leq M$ on $D_{R}\left(z_{0}\right)$, the $\left|f^{\prime}\left(z_{0}\right)\right| \leq M / R$.

Suppose $p(z)=a_{3} z^{3}+a_{2} z^{2}+a_{1} z+a_{0}$ is a polynomial of degree 3. If $|p(z)| \leq 1$ on the unit circle $\{z:|z|=1\}$, then show that $\left|a_{3}\right| \leq 6$.

PROBLEM 4

(25 pt) Prove that if f is an entire function which satisfies $|f(z)| \geq 1$ on the entire plane, then f is constant.

Prove that if an entire function has real part which is bounded above, then the function is constant.

PROBLEM 5

(25 pt) Show that if f is a non-constant analytic function on a connected open set U and if f has no zeroes on U, then there are no points of U where $|f(z)|$ has a local minimum.

Show that if f is a non-constant, continuous function on $\overline{D_{1}}(0)$, which is analytic on $D_{1}(0)$ and $|f(z)|=1$ for all z on the unit circle, then f has a zero somewhere in $D_{1}(0)$.

